3.14.4
Optimal. Leaf size=19
________________________________________________________________________________________
Rubi [B] time = 0.66, antiderivative size = 129, normalized size of antiderivative = 6.79,
number of steps used = 54, number of rules used = 19, integrand size = 76, = 0.250, Rules used
= {6725, 292, 31, 634, 617, 204, 628, 260, 321, 266, 43, 302, 200, 2528, 2525, 12, 459, 446, 77}
Antiderivative was successfully verified.
[In]
Int[(-10*x + 15*x^2 + 10*x^4 + 28*x^5 + 7*x^6 + 2*x^8 + 14*x^9 + (10*x + 20*x^4 + 6*x^5 + 12*x^8)*Log[(1 + 2*x
^3)/x^2])/(1 + 2*x^3),x]
[Out]
5*x^3 + x^7 + (5*ArcTan[(1 - 2*2^(1/3)*x)/Sqrt[3]])/(2^(2/3)*Sqrt[3]) + (5*2^(1/3)*ArcTan[(1 - 2*2^(1/3)*x)/Sq
rt[3]])/Sqrt[3] - (5*Sqrt[3]*ArcTan[(1 - 2*2^(1/3)*x)/Sqrt[3]])/2^(2/3) + 5*x^2*Log[(1 + 2*x^3)/x^2] + x^6*Log
[(1 + 2*x^3)/x^2]
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 31
Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]
Rule 43
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
Rule 77
Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))
Rule 200
Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Dist[1/(3*Rt[a, 3]^2), Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + Di
st[1/(3*Rt[a, 3]^2), Int[(2*Rt[a, 3] - Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x]
/; FreeQ[{a, b}, x]
Rule 204
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])
Rule 260
Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]
Rule 266
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]
Rule 292
Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> -Dist[(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]
Rule 302
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]
Rule 321
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
c, n, m, p, x]
Rule 446
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]
Rule 459
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(b*e*(m + n*(p + 1) + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
&& NeQ[m + n*(p + 1) + 1, 0]
Rule 617
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] || !RationalQ[b^2 - 4*a*c])] /;
FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]
Rule 628
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]
Rule 634
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] && !NiceSqrtQ[b^2 - 4*a*c]
Rule 2525
Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[((d + e*x)^(m
+ 1)*(a + b*Log[c*RFx^p])^n)/(e*(m + 1)), x] - Dist[(b*n*p)/(e*(m + 1)), Int[SimplifyIntegrand[((d + e*x)^(m +
1)*(a + b*Log[c*RFx^p])^(n - 1)*D[RFx, x])/RFx, x], x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && RationalFunc
tionQ[RFx, x] && IGtQ[n, 0] && (EqQ[n, 1] || IntegerQ[m]) && NeQ[m, -1]
Rule 2528
Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.)*(RGx_), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*Log[c*
RFx^p])^n, RGx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, p}, x] && RationalFunctionQ[RFx, x] && RationalF
unctionQ[RGx, x] && IGtQ[n, 0]
Rule 6725
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
/; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 34, normalized size = 1.79
Antiderivative was successfully verified.
[In]
Integrate[(-10*x + 15*x^2 + 10*x^4 + 28*x^5 + 7*x^6 + 2*x^8 + 14*x^9 + (10*x + 20*x^4 + 6*x^5 + 12*x^8)*Log[(1
+ 2*x^3)/x^2])/(1 + 2*x^3),x]
[Out]
5*x^3 + x^7 + 5*x^2*Log[x^(-2) + 2*x] + x^6*Log[x^(-2) + 2*x]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 31, normalized size = 1.63
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((12*x^8+6*x^5+20*x^4+10*x)*log((2*x^3+1)/x^2)+14*x^9+2*x^8+7*x^6+28*x^5+10*x^4+15*x^2-10*x)/(2*x^3+
1),x, algorithm="fricas")
[Out]
x^7 + 5*x^3 + (x^6 + 5*x^2)*log((2*x^3 + 1)/x^2)
________________________________________________________________________________________
giac [A] time = 0.37, size = 31, normalized size = 1.63
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((12*x^8+6*x^5+20*x^4+10*x)*log((2*x^3+1)/x^2)+14*x^9+2*x^8+7*x^6+28*x^5+10*x^4+15*x^2-10*x)/(2*x^3+
1),x, algorithm="giac")
[Out]
x^7 + 5*x^3 + (x^6 + 5*x^2)*log((2*x^3 + 1)/x^2)
________________________________________________________________________________________
maple [A] time = 0.21, size = 32, normalized size = 1.68
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
default |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((12*x^8+6*x^5+20*x^4+10*x)*ln((2*x^3+1)/x^2)+14*x^9+2*x^8+7*x^6+28*x^5+10*x^4+15*x^2-10*x)/(2*x^3+1),x,me
thod=_RETURNVERBOSE)
[Out]
(x^6+5*x^2)*ln((2*x^3+1)/x^2)+x^7+5*x^3
________________________________________________________________________________________
maxima [B] time = 1.15, size = 136, normalized size = 7.16
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((12*x^8+6*x^5+20*x^4+10*x)*log((2*x^3+1)/x^2)+14*x^9+2*x^8+7*x^6+28*x^5+10*x^4+15*x^2-10*x)/(2*x^3+
1),x, algorithm="maxima")
[Out]
x^7 + 5*x^3 + (x^6 + 5*x^2)*log(2*x^3 + 1) + 1/4*(5*2^(1/3) - 1)*log(2^(2/3)*x^2 - 2^(1/3)*x + 1) - 1/4*(10*2^
(1/3) + 1)*log(1/2*2^(2/3)*(2^(1/3)*x + 1)) - 2*(x^6 + 5*x^2)*log(x) - 5/4*2^(1/3)*log(2^(2/3)*x^2 - 2^(1/3)*x
+ 1) + 5/2*2^(1/3)*log(1/2*2^(2/3)*(2^(1/3)*x + 1)) + 1/4*log(2*x^3 + 1)
________________________________________________________________________________________
mupad [B] time = 1.13, size = 23, normalized size = 1.21
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((log((2*x^3 + 1)/x^2)*(10*x + 20*x^4 + 6*x^5 + 12*x^8) - 10*x + 15*x^2 + 10*x^4 + 28*x^5 + 7*x^6 + 2*x^8 +
14*x^9)/(2*x^3 + 1),x)
[Out]
x^2*(x + log((2*x^3 + 1)/x^2))*(x^4 + 5)
________________________________________________________________________________________
sympy [A] time = 0.17, size = 27, normalized size = 1.42
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((12*x**8+6*x**5+20*x**4+10*x)*ln((2*x**3+1)/x**2)+14*x**9+2*x**8+7*x**6+28*x**5+10*x**4+15*x**2-10*
x)/(2*x**3+1),x)
[Out]
x**7 + 5*x**3 + (x**6 + 5*x**2)*log((2*x**3 + 1)/x**2)
________________________________________________________________________________________