Optimal. Leaf size=21 \[ -e^{6+\frac {8 (4+x) \log (x)}{x^2}} x+x^2 \]
________________________________________________________________________________________
Rubi [F] time = 0.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 x^3+e^{\frac {2 \left (3 x^2+(16+4 x) \log (x)\right )}{x^2}} \left (-32-8 x-x^2+(64+8 x) \log (x)\right )}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 x-e^6 x^{-2+\frac {32}{x^2}+\frac {8}{x}} \left (32+8 x+x^2-64 \log (x)-8 x \log (x)\right )\right ) \, dx\\ &=x^2-e^6 \int x^{-2+\frac {32}{x^2}+\frac {8}{x}} \left (32+8 x+x^2-64 \log (x)-8 x \log (x)\right ) \, dx\\ &=x^2-e^6 \int \left (32 x^{-2+\frac {32}{x^2}+\frac {8}{x}}+8 x^{-1+\frac {32}{x^2}+\frac {8}{x}}+x^{\frac {32}{x^2}+\frac {8}{x}}-64 x^{-2+\frac {32}{x^2}+\frac {8}{x}} \log (x)-8 x^{-1+\frac {32}{x^2}+\frac {8}{x}} \log (x)\right ) \, dx\\ &=x^2-e^6 \int x^{\frac {32}{x^2}+\frac {8}{x}} \, dx-\left (8 e^6\right ) \int x^{-1+\frac {32}{x^2}+\frac {8}{x}} \, dx+\left (8 e^6\right ) \int x^{-1+\frac {32}{x^2}+\frac {8}{x}} \log (x) \, dx-\left (32 e^6\right ) \int x^{-2+\frac {32}{x^2}+\frac {8}{x}} \, dx+\left (64 e^6\right ) \int x^{-2+\frac {32}{x^2}+\frac {8}{x}} \log (x) \, dx\\ &=x^2-e^6 \int x^{\frac {32+8 x}{x^2}} \, dx-\left (8 e^6\right ) \int x^{-1+\frac {32}{x^2}+\frac {8}{x}} \, dx-\left (8 e^6\right ) \int \frac {\int x^{-1+\frac {32}{x^2}+\frac {8}{x}} \, dx}{x} \, dx-\left (32 e^6\right ) \int x^{-2+\frac {32}{x^2}+\frac {8}{x}} \, dx-\left (64 e^6\right ) \int \frac {\int x^{-2+\frac {32}{x^2}+\frac {8}{x}} \, dx}{x} \, dx+\left (8 e^6 \log (x)\right ) \int x^{-1+\frac {32}{x^2}+\frac {8}{x}} \, dx+\left (64 e^6 \log (x)\right ) \int x^{-2+\frac {32}{x^2}+\frac {8}{x}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 21, normalized size = 1.00 \begin {gather*} x^2-e^6 x^{1+\frac {8 (4+x)}{x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.17, size = 26, normalized size = 1.24 \begin {gather*} x^{2} - x e^{\left (\frac {2 \, {\left (3 \, x^{2} + 4 \, {\left (x + 4\right )} \log \relax (x)\right )}}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.47, size = 28, normalized size = 1.33 \begin {gather*} x^{2} - x e^{\left (\frac {2 \, {\left (3 \, x^{2} + 4 \, x \log \relax (x) + 16 \, \log \relax (x)\right )}}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 28, normalized size = 1.33
method | result | size |
risch | \(-x \,x^{\frac {32}{x^{2}}} x^{\frac {8}{x}} {\mathrm e}^{6}+x^{2}\) | \(28\) |
default | \(-x \,{\mathrm e}^{\frac {2 \left (4 x +16\right ) \ln \relax (x )+6 x^{2}}{x^{2}}}+x^{2}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 24, normalized size = 1.14 \begin {gather*} x^{2} - x e^{\left (\frac {8 \, \log \relax (x)}{x} + \frac {32 \, \log \relax (x)}{x^{2}} + 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.02, size = 22, normalized size = 1.05 \begin {gather*} x^2-x\,x^{\frac {8}{x}+\frac {32}{x^2}}\,{\mathrm {e}}^6 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 24, normalized size = 1.14 \begin {gather*} x^{2} - x e^{\frac {2 \left (3 x^{2} + \left (4 x + 16\right ) \log {\relax (x )}\right )}{x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________