3.2.18 \(\int \frac {e^{-x} (-45-45 x+e^{-\frac {e^5 x}{5}} (5+5 x+e^5 x))}{5 x^2} \, dx\)

Optimal. Leaf size=29 \[ \frac {e^{-x} \left (9-e^{\frac {1}{5} \left (x-\left (1+e^5\right ) x\right )}\right )}{x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.33, antiderivative size = 28, normalized size of antiderivative = 0.97, number of steps used = 5, number of rules used = 3, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {12, 6742, 2197} \begin {gather*} \frac {9 e^{-x}}{x}-\frac {e^{-\frac {1}{5} \left (5+e^5\right ) x}}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-45 - 45*x + (5 + 5*x + E^5*x)/E^((E^5*x)/5))/(5*E^x*x^2),x]

[Out]

9/(E^x*x) - 1/(E^(((5 + E^5)*x)/5)*x)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2197

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> With[{b = Coefficient[v, x, 1], d = Coefficient[u, x, 0],
e = Coefficient[u, x, 1], f = Coefficient[w, x, 0], g = Coefficient[w, x, 1]}, Simp[(g*u^(m + 1)*F^(c*v))/(b*c
*e*Log[F]), x] /; EqQ[e*g*(m + 1) - b*c*(e*f - d*g)*Log[F], 0]] /; FreeQ[{F, c, m}, x] && LinearQ[{u, v, w}, x
]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{-x} \left (-45-45 x+e^{-\frac {e^5 x}{5}} \left (5+5 x+e^5 x\right )\right )}{x^2} \, dx\\ &=\frac {1}{5} \int \left (-\frac {45 e^{-x} (1+x)}{x^2}+\frac {e^{-x-\frac {e^5 x}{5}} \left (5+\left (5+e^5\right ) x\right )}{x^2}\right ) \, dx\\ &=\frac {1}{5} \int \frac {e^{-x-\frac {e^5 x}{5}} \left (5+\left (5+e^5\right ) x\right )}{x^2} \, dx-9 \int \frac {e^{-x} (1+x)}{x^2} \, dx\\ &=\frac {9 e^{-x}}{x}-\frac {e^{-\frac {1}{5} \left (5+e^5\right ) x}}{x}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 23, normalized size = 0.79 \begin {gather*} \frac {e^{-x} \left (9-e^{-\frac {e^5 x}{5}}\right )}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-45 - 45*x + (5 + 5*x + E^5*x)/E^((E^5*x)/5))/(5*E^x*x^2),x]

[Out]

(9 - E^(-1/5*(E^5*x)))/(E^x*x)

________________________________________________________________________________________

fricas [A]  time = 2.16, size = 17, normalized size = 0.59 \begin {gather*} -\frac {{\left (e^{\left (-\frac {1}{5} \, x e^{5}\right )} - 9\right )} e^{\left (-x\right )}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*((x*exp(5)+5*x+5)*exp(-1/5*x*exp(5))-45*x-45)/exp(x)/x^2,x, algorithm="fricas")

[Out]

-(e^(-1/5*x*e^5) - 9)*e^(-x)/x

________________________________________________________________________________________

giac [A]  time = 0.44, size = 22, normalized size = 0.76 \begin {gather*} -\frac {e^{\left (-\frac {1}{5} \, x e^{5} - x\right )} - 9 \, e^{\left (-x\right )}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*((x*exp(5)+5*x+5)*exp(-1/5*x*exp(5))-45*x-45)/exp(x)/x^2,x, algorithm="giac")

[Out]

-(e^(-1/5*x*e^5 - x) - 9*e^(-x))/x

________________________________________________________________________________________

maple [A]  time = 0.09, size = 19, normalized size = 0.66




method result size



norman \(\frac {\left (9-{\mathrm e}^{-\frac {x \,{\mathrm e}^{5}}{5}}\right ) {\mathrm e}^{-x}}{x}\) \(19\)
risch \(\frac {9 \,{\mathrm e}^{-x}}{x}-\frac {{\mathrm e}^{-\frac {x \left ({\mathrm e}^{5}+5\right )}{5}}}{x}\) \(24\)
default \(-\frac {{\mathrm e}^{5} \expIntegralEi \left (1, -\left (-1-\frac {{\mathrm e}^{5}}{5}\right ) x \right )}{5}+\frac {9 \,{\mathrm e}^{-x}}{x}+\left (-1-\frac {{\mathrm e}^{5}}{5}\right ) \left (-\frac {{\mathrm e}^{\left (-1-\frac {{\mathrm e}^{5}}{5}\right ) x}}{\left (-1-\frac {{\mathrm e}^{5}}{5}\right ) x}-\expIntegralEi \left (1, -\left (-1-\frac {{\mathrm e}^{5}}{5}\right ) x \right )\right )-\expIntegralEi \left (1, -\left (-1-\frac {{\mathrm e}^{5}}{5}\right ) x \right )\) \(82\)
meijerg \(-\frac {9 \left (-2 x +2\right )}{2 x}+\frac {9 \,{\mathrm e}^{-x}}{x}-4+\frac {9}{x}+\frac {{\mathrm e}^{5} \left (1+5 \,{\mathrm e}^{-5}\right ) \left (\frac {5 \,{\mathrm e}^{-5} \left (-\frac {2 x \,{\mathrm e}^{5} \left (1+5 \,{\mathrm e}^{-5}\right )}{5}+2\right )}{2 x \left (1+5 \,{\mathrm e}^{-5}\right )}-\frac {5 \,{\mathrm e}^{-5-\frac {x \,{\mathrm e}^{5} \left (1+5 \,{\mathrm e}^{-5}\right )}{5}}}{x \left (1+5 \,{\mathrm e}^{-5}\right )}+\ln \left (\frac {x \,{\mathrm e}^{5} \left (1+5 \,{\mathrm e}^{-5}\right )}{5}\right )+\expIntegralEi \left (1, \frac {x \,{\mathrm e}^{5} \left (1+5 \,{\mathrm e}^{-5}\right )}{5}\right )-4-\ln \relax (x )+\ln \relax (5)-\ln \left (1+5 \,{\mathrm e}^{-5}\right )-\frac {5 \,{\mathrm e}^{-5}}{x \left (1+5 \,{\mathrm e}^{-5}\right )}\right )}{5}-\ln \left (\frac {x \,{\mathrm e}^{5} \left (1+5 \,{\mathrm e}^{-5}\right )}{5}\right )-\expIntegralEi \left (1, \frac {x \,{\mathrm e}^{5} \left (1+5 \,{\mathrm e}^{-5}\right )}{5}\right )+\ln \relax (x )-\ln \relax (5)+\ln \left (1+5 \,{\mathrm e}^{-5}\right )+\frac {{\mathrm e}^{5} \left (-\ln \left (\frac {x \,{\mathrm e}^{5} \left (1+5 \,{\mathrm e}^{-5}\right )}{5}\right )-\expIntegralEi \left (1, \frac {x \,{\mathrm e}^{5} \left (1+5 \,{\mathrm e}^{-5}\right )}{5}\right )+\ln \relax (x )-\ln \relax (5)+5+\ln \left (1+5 \,{\mathrm e}^{-5}\right )\right )}{5}\) \(239\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/5*((x*exp(5)+5*x+5)*exp(-1/5*x*exp(5))-45*x-45)/exp(x)/x^2,x,method=_RETURNVERBOSE)

[Out]

(9-exp(-1/5*x*exp(5)))/exp(x)/x

________________________________________________________________________________________

maxima [C]  time = 0.61, size = 47, normalized size = 1.62 \begin {gather*} \frac {1}{5} \, {\rm Ei}\left (-\frac {1}{5} \, x {\left (e^{5} + 5\right )}\right ) e^{5} - \frac {1}{5} \, {\left (e^{5} + 5\right )} \Gamma \left (-1, \frac {1}{5} \, x {\left (e^{5} + 5\right )}\right ) + {\rm Ei}\left (-\frac {1}{5} \, x {\left (e^{5} + 5\right )}\right ) - 9 \, {\rm Ei}\left (-x\right ) + 9 \, \Gamma \left (-1, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*((x*exp(5)+5*x+5)*exp(-1/5*x*exp(5))-45*x-45)/exp(x)/x^2,x, algorithm="maxima")

[Out]

1/5*Ei(-1/5*x*(e^5 + 5))*e^5 - 1/5*(e^5 + 5)*gamma(-1, 1/5*x*(e^5 + 5)) + Ei(-1/5*x*(e^5 + 5)) - 9*Ei(-x) + 9*
gamma(-1, x)

________________________________________________________________________________________

mupad [B]  time = 0.11, size = 23, normalized size = 0.79 \begin {gather*} \frac {9\,{\mathrm {e}}^{-x}-{\mathrm {e}}^{-x-\frac {x\,{\mathrm {e}}^5}{5}}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(-x)*(9*x - (exp(-(x*exp(5))/5)*(5*x + x*exp(5) + 5))/5 + 9))/x^2,x)

[Out]

(9*exp(-x) - exp(- x - (x*exp(5))/5))/x

________________________________________________________________________________________

sympy [A]  time = 0.55, size = 20, normalized size = 0.69 \begin {gather*} \frac {9 e^{- x}}{x} - \frac {e^{- x} e^{- \frac {x e^{5}}{5}}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*((x*exp(5)+5*x+5)*exp(-1/5*x*exp(5))-45*x-45)/exp(x)/x**2,x)

[Out]

9*exp(-x)/x - exp(-x)*exp(-x*exp(5)/5)/x

________________________________________________________________________________________