Optimal. Leaf size=33 \[ (4-x) \log \left (-4+\frac {1}{4} x \left (-3+\frac {x}{3 \left (-e^{1+x}+\log (x)\right )}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 40.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2+2 x} (36-9 x)+4 x-x^2+e^{1+x} \left (8 x-6 x^2+x^3\right )+\left (-8 x+2 x^2+e^{1+x} (-72+18 x)\right ) \log (x)+(36-9 x) \log ^2(x)+\left (e^{2+2 x} (-48-9 x)-e^{1+x} x^2+\left (x^2+e^{1+x} (96+18 x)\right ) \log (x)+(-48-9 x) \log ^2(x)\right ) \log \left (\frac {x^2+e^{1+x} (48+9 x)+(-48-9 x) \log (x)}{-12 e^{1+x}+12 \log (x)}\right )}{e^{1+x} x^2+e^{2+2 x} (48+9 x)+\left (e^{1+x} (-96-18 x)-x^2\right ) \log (x)+(48+9 x) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {(-4+x) (-1+x \log (x))}{x \left (e^{1+x}-\log (x)\right )}+\frac {(-4+x) \left (768+288 x-5 x^2+13 x^3+3 x^4-768 x \log (x)-288 x^2 \log (x)-27 x^3 \log (x)\right )}{x (16+3 x) \left (48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)\right )}+\frac {12-3 x-16 \log \left (\frac {x^2+e^{1+x} (48+9 x)-3 (16+3 x) \log (x)}{12 \left (-e^{1+x}+\log (x)\right )}\right )-3 x \log \left (\frac {x^2+e^{1+x} (48+9 x)-3 (16+3 x) \log (x)}{12 \left (-e^{1+x}+\log (x)\right )}\right )}{16+3 x}\right ) \, dx\\ &=\int \frac {(-4+x) (-1+x \log (x))}{x \left (e^{1+x}-\log (x)\right )} \, dx+\int \frac {(-4+x) \left (768+288 x-5 x^2+13 x^3+3 x^4-768 x \log (x)-288 x^2 \log (x)-27 x^3 \log (x)\right )}{x (16+3 x) \left (48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)\right )} \, dx+\int \frac {12-3 x-16 \log \left (\frac {x^2+e^{1+x} (48+9 x)-3 (16+3 x) \log (x)}{12 \left (-e^{1+x}+\log (x)\right )}\right )-3 x \log \left (\frac {x^2+e^{1+x} (48+9 x)-3 (16+3 x) \log (x)}{12 \left (-e^{1+x}+\log (x)\right )}\right )}{16+3 x} \, dx\\ &=\int \left (\frac {-1+x \log (x)}{e^{1+x}-\log (x)}-\frac {4 (-1+x \log (x))}{x \left (e^{1+x}-\log (x)\right )}\right ) \, dx+\int \left (-\frac {768+288 x-5 x^2+13 x^3+3 x^4-768 x \log (x)-288 x^2 \log (x)-27 x^3 \log (x)}{4 x \left (48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)\right )}+\frac {7 \left (768+288 x-5 x^2+13 x^3+3 x^4-768 x \log (x)-288 x^2 \log (x)-27 x^3 \log (x)\right )}{4 (16+3 x) \left (48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)\right )}\right ) \, dx+\int \left (-\frac {3 (-4+x)}{16+3 x}-\log \left (\frac {x^2+e^{1+x} (48+9 x)-3 (16+3 x) \log (x)}{12 \left (-e^{1+x}+\log (x)\right )}\right )\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {768+288 x-5 x^2+13 x^3+3 x^4-768 x \log (x)-288 x^2 \log (x)-27 x^3 \log (x)}{x \left (48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)\right )} \, dx\right )+\frac {7}{4} \int \frac {768+288 x-5 x^2+13 x^3+3 x^4-768 x \log (x)-288 x^2 \log (x)-27 x^3 \log (x)}{(16+3 x) \left (48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)\right )} \, dx-3 \int \frac {-4+x}{16+3 x} \, dx-4 \int \frac {-1+x \log (x)}{x \left (e^{1+x}-\log (x)\right )} \, dx+\int \frac {-1+x \log (x)}{e^{1+x}-\log (x)} \, dx-\int \log \left (\frac {x^2+e^{1+x} (48+9 x)-3 (16+3 x) \log (x)}{12 \left (-e^{1+x}+\log (x)\right )}\right ) \, dx\\ &=-x \log \left (-\frac {x^2+3 e^{1+x} (16+3 x)-3 (16+3 x) \log (x)}{12 \left (e^{1+x}-\log (x)\right )}\right )-\frac {1}{4} \int \left (\frac {288}{48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)}+\frac {768}{x \left (48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)\right )}-\frac {5 x}{48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)}+\frac {13 x^2}{48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)}+\frac {3 x^3}{48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)}-\frac {288 x \log (x)}{48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)}-\frac {27 x^2 \log (x)}{48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)}+\frac {768 \log (x)}{-48 e^{1+x}-9 e^{1+x} x-x^2+48 \log (x)+9 x \log (x)}\right ) \, dx+\frac {7}{4} \int \left (\frac {768}{(16+3 x) \left (48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)\right )}+\frac {288 x}{(16+3 x) \left (48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)\right )}-\frac {5 x^2}{(16+3 x) \left (48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)\right )}+\frac {13 x^3}{(16+3 x) \left (48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)\right )}+\frac {3 x^4}{(16+3 x) \left (48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)\right )}-\frac {768 x \log (x)}{(16+3 x) \left (48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)\right )}-\frac {288 x^2 \log (x)}{(16+3 x) \left (48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)\right )}-\frac {27 x^3 \log (x)}{(16+3 x) \left (48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)\right )}\right ) \, dx-3 \int \left (\frac {1}{3}-\frac {28}{3 (16+3 x)}\right ) \, dx-4 \int \left (-\frac {1}{x \left (e^{1+x}-\log (x)\right )}+\frac {\log (x)}{e^{1+x}-\log (x)}\right ) \, dx+\int \left (-\frac {1}{e^{1+x}-\log (x)}+\frac {x \log (x)}{e^{1+x}-\log (x)}\right ) \, dx+\int \frac {x \left (9 e^{2+2 x}+x-e^{1+x} (-2+x) x-2 \left (9 e^{1+x}+x\right ) \log (x)+9 \log ^2(x)\right )}{\left (e^{1+x}-\log (x)\right ) \left (x^2+e^{1+x} (48+9 x)-3 (16+3 x) \log (x)\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 5.62, size = 89, normalized size = 2.70 \begin {gather*} -4 \log \left (e^{1+x}-\log (x)\right )+4 \log \left (48 e^{1+x}+9 e^{1+x} x+x^2-48 \log (x)-9 x \log (x)\right )-x \log \left (\frac {x^2+e^{1+x} (48+9 x)-3 (16+3 x) \log (x)}{12 \left (-e^{1+x}+\log (x)\right )}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 43, normalized size = 1.30 \begin {gather*} -{\left (x - 4\right )} \log \left (-\frac {x^{2} + 3 \, {\left (3 \, x + 16\right )} e^{\left (x + 1\right )} - 3 \, {\left (3 \, x + 16\right )} \log \relax (x)}{12 \, {\left (e^{\left (x + 1\right )} - \log \relax (x)\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.26, size = 467, normalized size = 14.15
method | result | size |
risch | \(-x \ln \left (x^{2}+\left (9 \,{\mathrm e}^{x +1}-9 \ln \relax (x )\right ) x +48 \,{\mathrm e}^{x +1}-48 \ln \relax (x )\right )+x \ln \left (-\ln \relax (x )+{\mathrm e}^{x +1}\right )+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{\ln \relax (x )-{\mathrm e}^{x +1}}\right ) \mathrm {csgn}\left (i \left (-x^{2}-\left (9 \,{\mathrm e}^{x +1}-9 \ln \relax (x )\right ) x -48 \,{\mathrm e}^{x +1}+48 \ln \relax (x )\right )\right ) \mathrm {csgn}\left (\frac {i \left (-x^{2}-\left (9 \,{\mathrm e}^{x +1}-9 \ln \relax (x )\right ) x -48 \,{\mathrm e}^{x +1}+48 \ln \relax (x )\right )}{\ln \relax (x )-{\mathrm e}^{x +1}}\right )}{2}-\frac {i \pi x \mathrm {csgn}\left (\frac {i \left (-x^{2}-\left (9 \,{\mathrm e}^{x +1}-9 \ln \relax (x )\right ) x -48 \,{\mathrm e}^{x +1}+48 \ln \relax (x )\right )}{\ln \relax (x )-{\mathrm e}^{x +1}}\right )^{3}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (i \left (-x^{2}-\left (9 \,{\mathrm e}^{x +1}-9 \ln \relax (x )\right ) x -48 \,{\mathrm e}^{x +1}+48 \ln \relax (x )\right )\right ) \mathrm {csgn}\left (\frac {i \left (-x^{2}-\left (9 \,{\mathrm e}^{x +1}-9 \ln \relax (x )\right ) x -48 \,{\mathrm e}^{x +1}+48 \ln \relax (x )\right )}{\ln \relax (x )-{\mathrm e}^{x +1}}\right )^{2}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{\ln \relax (x )-{\mathrm e}^{x +1}}\right ) \mathrm {csgn}\left (\frac {i \left (-x^{2}-\left (9 \,{\mathrm e}^{x +1}-9 \ln \relax (x )\right ) x -48 \,{\mathrm e}^{x +1}+48 \ln \relax (x )\right )}{\ln \relax (x )-{\mathrm e}^{x +1}}\right )^{2}}{2}+i \pi x \mathrm {csgn}\left (\frac {i \left (-x^{2}-\left (9 \,{\mathrm e}^{x +1}-9 \ln \relax (x )\right ) x -48 \,{\mathrm e}^{x +1}+48 \ln \relax (x )\right )}{\ln \relax (x )-{\mathrm e}^{x +1}}\right )^{2}-i \pi x +2 x \ln \relax (2)+x \ln \relax (3)+4 \ln \left (3 x +16\right )+4 \ln \left (\ln \relax (x )-\frac {x^{2}+9 x \,{\mathrm e}^{x +1}+48 \,{\mathrm e}^{x +1}}{3 \left (3 x +16\right )}\right )-4 \ln \left (\ln \relax (x )-{\mathrm e}^{x +1}\right )\) | \(467\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.81, size = 120, normalized size = 3.64 \begin {gather*} x {\left (\log \relax (3) + 2 \, \log \relax (2)\right )} - x \log \left (x^{2} + 3 \, {\left (3 \, x e + 16 \, e\right )} e^{x} - 3 \, {\left (3 \, x + 16\right )} \log \relax (x)\right ) + x \log \left (-e^{\left (x + 1\right )} + \log \relax (x)\right ) - 4 \, \log \left ({\left (e^{\left (x + 1\right )} - \log \relax (x)\right )} e^{\left (-1\right )}\right ) + 4 \, \log \left (3 \, x + 16\right ) + 4 \, \log \left (\frac {x^{2} + 3 \, {\left (3 \, x e + 16 \, e\right )} e^{x} - 3 \, {\left (3 \, x + 16\right )} \log \relax (x)}{3 \, {\left (3 \, x e + 16 \, e\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^{2\,x+2}\,\left (9\,x-36\right )-4\,x+\ln \left (-\frac {{\mathrm {e}}^{x+1}\,\left (9\,x+48\right )-\ln \relax (x)\,\left (9\,x+48\right )+x^2}{12\,{\mathrm {e}}^{x+1}-12\,\ln \relax (x)}\right )\,\left ({\mathrm {e}}^{2\,x+2}\,\left (9\,x+48\right )-\ln \relax (x)\,\left ({\mathrm {e}}^{x+1}\,\left (18\,x+96\right )+x^2\right )+x^2\,{\mathrm {e}}^{x+1}+{\ln \relax (x)}^2\,\left (9\,x+48\right )\right )-\ln \relax (x)\,\left ({\mathrm {e}}^{x+1}\,\left (18\,x-72\right )-8\,x+2\,x^2\right )+x^2+{\ln \relax (x)}^2\,\left (9\,x-36\right )-{\mathrm {e}}^{x+1}\,\left (x^3-6\,x^2+8\,x\right )}{{\mathrm {e}}^{2\,x+2}\,\left (9\,x+48\right )-\ln \relax (x)\,\left ({\mathrm {e}}^{x+1}\,\left (18\,x+96\right )+x^2\right )+x^2\,{\mathrm {e}}^{x+1}+{\ln \relax (x)}^2\,\left (9\,x+48\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________