Optimal. Leaf size=28 \[ \frac {3 \left (9 \left (4+e^x-x^2\right )+\frac {x-\log (x)}{x^2}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 29, normalized size of antiderivative = 1.04, number of steps used = 8, number of rules used = 3, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {14, 2197, 2304} \begin {gather*} -\frac {3 \log (x)}{x^3}+\frac {3}{x^2}-27 x+\frac {27 e^x}{x}+\frac {108}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2197
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {27 e^x (-1+x)}{x^2}-\frac {3 \left (1+2 x+36 x^2+9 x^4-3 \log (x)\right )}{x^4}\right ) \, dx\\ &=-\left (3 \int \frac {1+2 x+36 x^2+9 x^4-3 \log (x)}{x^4} \, dx\right )+27 \int \frac {e^x (-1+x)}{x^2} \, dx\\ &=\frac {27 e^x}{x}-3 \int \left (\frac {1+2 x+36 x^2+9 x^4}{x^4}-\frac {3 \log (x)}{x^4}\right ) \, dx\\ &=\frac {27 e^x}{x}-3 \int \frac {1+2 x+36 x^2+9 x^4}{x^4} \, dx+9 \int \frac {\log (x)}{x^4} \, dx\\ &=-\frac {1}{x^3}+\frac {27 e^x}{x}-\frac {3 \log (x)}{x^3}-3 \int \left (9+\frac {1}{x^4}+\frac {2}{x^3}+\frac {36}{x^2}\right ) \, dx\\ &=\frac {3}{x^2}+\frac {108}{x}+\frac {27 e^x}{x}-27 x-\frac {3 \log (x)}{x^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 25, normalized size = 0.89 \begin {gather*} -\frac {3 \left (x \left (-1-9 \left (4+e^x\right ) x+9 x^3\right )+\log (x)\right )}{x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 28, normalized size = 1.00 \begin {gather*} -\frac {3 \, {\left (9 \, x^{4} - 9 \, x^{2} e^{x} - 36 \, x^{2} - x + \log \relax (x)\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 28, normalized size = 1.00 \begin {gather*} -\frac {3 \, {\left (9 \, x^{4} - 9 \, x^{2} e^{x} - 36 \, x^{2} - x + \log \relax (x)\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 29, normalized size = 1.04
method | result | size |
default | \(-\frac {3 \ln \relax (x )}{x^{3}}-27 x +\frac {108}{x}+\frac {3}{x^{2}}+\frac {27 \,{\mathrm e}^{x}}{x}\) | \(29\) |
risch | \(-\frac {3 \ln \relax (x )}{x^{3}}-\frac {3 \left (9 x^{3}-9 \,{\mathrm e}^{x} x -36 x -1\right )}{x^{2}}\) | \(29\) |
norman | \(\frac {3 x +108 x^{2}-27 x^{4}+27 \,{\mathrm e}^{x} x^{2}-3 \ln \relax (x )}{x^{3}}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.44, size = 32, normalized size = 1.14 \begin {gather*} -27 \, x + \frac {108}{x} + \frac {3}{x^{2}} - \frac {3 \, \log \relax (x)}{x^{3}} + 27 \, {\rm Ei}\relax (x) - 27 \, \Gamma \left (-1, -x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.95, size = 26, normalized size = 0.93 \begin {gather*} \frac {3\,x-3\,\ln \relax (x)+x^2\,\left (27\,{\mathrm {e}}^x+108\right )}{x^3}-27\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 27, normalized size = 0.96 \begin {gather*} - 27 x + \frac {27 e^{x}}{x} - \frac {- 108 x - 3}{x^{2}} - \frac {3 \log {\relax (x )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________