3.13.73 \(\int \frac {e^{5 x^2} (2+4 x)+e^{5 x^2} (-30 x+10 x^2+10 x^3) \log (6561-4374 x-3645 x^2+1458 x^3+729 x^4)}{-3+x+x^2} \, dx\)

Optimal. Leaf size=19 \[ e^{5 x^2} \log \left (729 \left (-3+x+x^2\right )^2\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 23, normalized size of antiderivative = 1.21, number of steps used = 3, number of rules used = 3, integrand size = 66, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {6688, 12, 2288} \begin {gather*} e^{5 x^2} \log \left (729 \left (-x^2-x+3\right )^2\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(E^(5*x^2)*(2 + 4*x) + E^(5*x^2)*(-30*x + 10*x^2 + 10*x^3)*Log[6561 - 4374*x - 3645*x^2 + 1458*x^3 + 729*x
^4])/(-3 + x + x^2),x]

[Out]

E^(5*x^2)*Log[729*(3 - x - x^2)^2]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{5 x^2} \left (-1-2 x-5 x \left (-3+x+x^2\right ) \log \left (729 \left (-3+x+x^2\right )^2\right )\right )}{3-x-x^2} \, dx\\ &=2 \int \frac {e^{5 x^2} \left (-1-2 x-5 x \left (-3+x+x^2\right ) \log \left (729 \left (-3+x+x^2\right )^2\right )\right )}{3-x-x^2} \, dx\\ &=e^{5 x^2} \log \left (729 \left (3-x-x^2\right )^2\right )\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 19, normalized size = 1.00 \begin {gather*} e^{5 x^2} \log \left (729 \left (-3+x+x^2\right )^2\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^(5*x^2)*(2 + 4*x) + E^(5*x^2)*(-30*x + 10*x^2 + 10*x^3)*Log[6561 - 4374*x - 3645*x^2 + 1458*x^3 +
 729*x^4])/(-3 + x + x^2),x]

[Out]

E^(5*x^2)*Log[729*(-3 + x + x^2)^2]

________________________________________________________________________________________

fricas [A]  time = 0.69, size = 28, normalized size = 1.47 \begin {gather*} e^{\left (5 \, x^{2}\right )} \log \left (729 \, x^{4} + 1458 \, x^{3} - 3645 \, x^{2} - 4374 \, x + 6561\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((10*x^3+10*x^2-30*x)*exp(5*x^2)*log(729*x^4+1458*x^3-3645*x^2-4374*x+6561)+(4*x+2)*exp(5*x^2))/(x^2
+x-3),x, algorithm="fricas")

[Out]

e^(5*x^2)*log(729*x^4 + 1458*x^3 - 3645*x^2 - 4374*x + 6561)

________________________________________________________________________________________

giac [A]  time = 0.39, size = 28, normalized size = 1.47 \begin {gather*} e^{\left (5 \, x^{2}\right )} \log \left (729 \, x^{4} + 1458 \, x^{3} - 3645 \, x^{2} - 4374 \, x + 6561\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((10*x^3+10*x^2-30*x)*exp(5*x^2)*log(729*x^4+1458*x^3-3645*x^2-4374*x+6561)+(4*x+2)*exp(5*x^2))/(x^2
+x-3),x, algorithm="giac")

[Out]

e^(5*x^2)*log(729*x^4 + 1458*x^3 - 3645*x^2 - 4374*x + 6561)

________________________________________________________________________________________

maple [A]  time = 0.34, size = 29, normalized size = 1.53




method result size



norman \({\mathrm e}^{5 x^{2}} \ln \left (729 x^{4}+1458 x^{3}-3645 x^{2}-4374 x +6561\right )\) \(29\)
default \(6 \,{\mathrm e}^{5 x^{2}} \ln \relax (3)+{\mathrm e}^{5 x^{2}} \left (\ln \left (\left (x^{2}+x -3\right )^{2}\right )-2 \ln \left (x^{2}+x -3\right )\right )+2 \,{\mathrm e}^{5 x^{2}} \ln \left (x^{2}+x -3\right )\) \(53\)
risch \(2 \,{\mathrm e}^{5 x^{2}} \ln \left (x^{2}+x -3\right )+\frac {\left (-i \pi \mathrm {csgn}\left (i \left (x^{2}+x -3\right )\right )^{2} \mathrm {csgn}\left (i \left (x^{2}+x -3\right )^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i \left (x^{2}+x -3\right )\right ) \mathrm {csgn}\left (i \left (x^{2}+x -3\right )^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i \left (x^{2}+x -3\right )^{2}\right )^{3}+12 \ln \relax (3)\right ) {\mathrm e}^{5 x^{2}}}{2}\) \(104\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((10*x^3+10*x^2-30*x)*exp(5*x^2)*ln(729*x^4+1458*x^3-3645*x^2-4374*x+6561)+(4*x+2)*exp(5*x^2))/(x^2+x-3),x
,method=_RETURNVERBOSE)

[Out]

exp(5*x^2)*ln(729*x^4+1458*x^3-3645*x^2-4374*x+6561)

________________________________________________________________________________________

maxima [A]  time = 0.76, size = 26, normalized size = 1.37 \begin {gather*} 6 \, e^{\left (5 \, x^{2}\right )} \log \relax (3) + 2 \, e^{\left (5 \, x^{2}\right )} \log \left (x^{2} + x - 3\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((10*x^3+10*x^2-30*x)*exp(5*x^2)*log(729*x^4+1458*x^3-3645*x^2-4374*x+6561)+(4*x+2)*exp(5*x^2))/(x^2
+x-3),x, algorithm="maxima")

[Out]

6*e^(5*x^2)*log(3) + 2*e^(5*x^2)*log(x^2 + x - 3)

________________________________________________________________________________________

mupad [B]  time = 1.10, size = 29, normalized size = 1.53 \begin {gather*} {\mathrm {e}}^{5\,x^2}\,\left (\ln \left (729\right )+\ln \left (x^4+2\,x^3-5\,x^2-6\,x+9\right )\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(5*x^2)*(4*x + 2) + log(1458*x^3 - 3645*x^2 - 4374*x + 729*x^4 + 6561)*exp(5*x^2)*(10*x^2 - 30*x + 10*
x^3))/(x + x^2 - 3),x)

[Out]

exp(5*x^2)*(log(729) + log(2*x^3 - 5*x^2 - 6*x + x^4 + 9))

________________________________________________________________________________________

sympy [A]  time = 0.45, size = 27, normalized size = 1.42 \begin {gather*} e^{5 x^{2}} \log {\left (729 x^{4} + 1458 x^{3} - 3645 x^{2} - 4374 x + 6561 \right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((10*x**3+10*x**2-30*x)*exp(5*x**2)*ln(729*x**4+1458*x**3-3645*x**2-4374*x+6561)+(4*x+2)*exp(5*x**2)
)/(x**2+x-3),x)

[Out]

exp(5*x**2)*log(729*x**4 + 1458*x**3 - 3645*x**2 - 4374*x + 6561)

________________________________________________________________________________________