Optimal. Leaf size=24 \[ \left (-1+\frac {5}{e^2 (-4+x)}-\frac {27}{4 x}-2 x\right ) x \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 21, normalized size of antiderivative = 0.88, number of steps used = 4, number of rules used = 3, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {12, 27, 1850} \begin {gather*} -2 x^2-x-\frac {20}{e^2 (4-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-20+e^2 \left (-16-56 x+31 x^2-4 x^3\right )}{16-8 x+x^2} \, dx}{e^2}\\ &=\frac {\int \frac {-20+e^2 \left (-16-56 x+31 x^2-4 x^3\right )}{(-4+x)^2} \, dx}{e^2}\\ &=\frac {\int \left (-e^2-\frac {20}{(-4+x)^2}-4 e^2 x\right ) \, dx}{e^2}\\ &=-\frac {20}{e^2 (4-x)}-x-2 x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 0.79 \begin {gather*} \frac {20}{e^2 (-4+x)}-x-2 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 28, normalized size = 1.17 \begin {gather*} -\frac {{\left ({\left (2 \, x^{3} - 7 \, x^{2} - 4 \, x\right )} e^{2} - 20\right )} e^{\left (-2\right )}}{x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 23, normalized size = 0.96 \begin {gather*} -{\left (2 \, x^{2} e^{2} + x e^{2} - \frac {20}{x - 4}\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 19, normalized size = 0.79
method | result | size |
risch | \(-2 x^{2}-x +\frac {20 \,{\mathrm e}^{-2}}{x -4}\) | \(19\) |
default | \({\mathrm e}^{-2} \left (-2 x^{2} {\mathrm e}^{2}-{\mathrm e}^{2} x +\frac {20}{x -4}\right )\) | \(26\) |
norman | \(\frac {7 x^{2}-2 x^{3}+4 \left (4 \,{\mathrm e}^{2}+5\right ) {\mathrm e}^{-2}}{x -4}\) | \(30\) |
gosper | \(-\frac {\left (2 x^{3} {\mathrm e}^{2}-7 x^{2} {\mathrm e}^{2}-20-16 \,{\mathrm e}^{2}\right ) {\mathrm e}^{-2}}{x -4}\) | \(32\) |
meijerg | \(-\frac {5 \,{\mathrm e}^{-2} x}{4 \left (-\frac {x}{4}+1\right )}-\frac {4 x \left (-\frac {1}{8} x^{2}-\frac {3}{2} x +12\right )}{-\frac {x}{4}+1}+\frac {31 x \left (-\frac {3 x}{4}+6\right )}{3 \left (-\frac {x}{4}+1\right )}-\frac {15 x}{-\frac {x}{4}+1}\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 23, normalized size = 0.96 \begin {gather*} -{\left (2 \, x^{2} e^{2} + x e^{2} - \frac {20}{x - 4}\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.89, size = 23, normalized size = 0.96 \begin {gather*} -x-\frac {20}{4\,{\mathrm {e}}^2-x\,{\mathrm {e}}^2}-2\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 17, normalized size = 0.71 \begin {gather*} - 2 x^{2} - x + \frac {20}{x e^{2} - 4 e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________