Optimal. Leaf size=30 \[ e^{-x^2} \left (-4+3 \left (\frac {4}{x}-x\right )\right ) x \left (1+x-x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.20, antiderivative size = 55, normalized size of antiderivative = 1.83, number of steps used = 14, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {2226, 2205, 2209, 2212} \begin {gather*} -19 e^{-x^2} x^2+8 e^{-x^2} x+12 e^{-x^2}+3 e^{-x^2} x^4+e^{-x^2} x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2205
Rule 2209
Rule 2212
Rule 2226
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (8 e^{-x^2}-62 e^{-x^2} x-13 e^{-x^2} x^2+50 e^{-x^2} x^3-2 e^{-x^2} x^4-6 e^{-x^2} x^5\right ) \, dx\\ &=-\left (2 \int e^{-x^2} x^4 \, dx\right )-6 \int e^{-x^2} x^5 \, dx+8 \int e^{-x^2} \, dx-13 \int e^{-x^2} x^2 \, dx+50 \int e^{-x^2} x^3 \, dx-62 \int e^{-x^2} x \, dx\\ &=31 e^{-x^2}+\frac {13}{2} e^{-x^2} x-25 e^{-x^2} x^2+e^{-x^2} x^3+3 e^{-x^2} x^4+4 \sqrt {\pi } \text {erf}(x)-3 \int e^{-x^2} x^2 \, dx-\frac {13}{2} \int e^{-x^2} \, dx-12 \int e^{-x^2} x^3 \, dx+50 \int e^{-x^2} x \, dx\\ &=6 e^{-x^2}+8 e^{-x^2} x-19 e^{-x^2} x^2+e^{-x^2} x^3+3 e^{-x^2} x^4+\frac {3}{4} \sqrt {\pi } \text {erf}(x)-\frac {3}{2} \int e^{-x^2} \, dx-12 \int e^{-x^2} x \, dx\\ &=12 e^{-x^2}+8 e^{-x^2} x-19 e^{-x^2} x^2+e^{-x^2} x^3+3 e^{-x^2} x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 26, normalized size = 0.87 \begin {gather*} e^{-x^2} \left (12+8 x-19 x^2+x^3+3 x^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 25, normalized size = 0.83 \begin {gather*} {\left (3 \, x^{4} + x^{3} - 19 \, x^{2} + 8 \, x + 12\right )} e^{\left (-x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.42, size = 25, normalized size = 0.83 \begin {gather*} {\left (3 \, x^{4} + x^{3} - 19 \, x^{2} + 8 \, x + 12\right )} e^{\left (-x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 26, normalized size = 0.87
method | result | size |
gosper | \(\left (3 x^{4}+x^{3}-19 x^{2}+8 x +12\right ) {\mathrm e}^{-x^{2}}\) | \(26\) |
norman | \(\left (3 x^{4}+x^{3}-19 x^{2}+8 x +12\right ) {\mathrm e}^{-x^{2}}\) | \(26\) |
risch | \(\left (3 x^{4}+x^{3}-19 x^{2}+8 x +12\right ) {\mathrm e}^{-x^{2}}\) | \(26\) |
default | \(12 \,{\mathrm e}^{-x^{2}}+8 x \,{\mathrm e}^{-x^{2}}-19 \,{\mathrm e}^{-x^{2}} x^{2}+{\mathrm e}^{-x^{2}} x^{3}+3 \,{\mathrm e}^{-x^{2}} x^{4}\) | \(51\) |
meijerg | \(-12+\left (3 x^{4}+6 x^{2}+6\right ) {\mathrm e}^{-x^{2}}+\frac {x \left (10 x^{2}+15\right ) {\mathrm e}^{-x^{2}}}{10}-\frac {25 \left (2 x^{2}+2\right ) {\mathrm e}^{-x^{2}}}{2}+\frac {13 x \,{\mathrm e}^{-x^{2}}}{2}+31 \,{\mathrm e}^{-x^{2}}\) | \(70\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 66, normalized size = 2.20 \begin {gather*} 3 \, {\left (x^{4} + 2 \, x^{2} + 2\right )} e^{\left (-x^{2}\right )} + \frac {1}{2} \, {\left (2 \, x^{3} + 3 \, x\right )} e^{\left (-x^{2}\right )} - 25 \, {\left (x^{2} + 1\right )} e^{\left (-x^{2}\right )} + \frac {13}{2} \, x e^{\left (-x^{2}\right )} + 31 \, e^{\left (-x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 25, normalized size = 0.83 \begin {gather*} {\mathrm {e}}^{-x^2}\,\left (3\,x^4+x^3-19\,x^2+8\,x+12\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 22, normalized size = 0.73 \begin {gather*} \left (3 x^{4} + x^{3} - 19 x^{2} + 8 x + 12\right ) e^{- x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________