Optimal. Leaf size=26 \[ \frac {e^{2 e^5-2 x}}{40 x \left (x^2+\log (4)\right )} \]
________________________________________________________________________________________
Rubi [A] time = 1.03, antiderivative size = 34, normalized size of antiderivative = 1.31, number of steps used = 4, number of rules used = 4, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.073, Rules used = {1594, 28, 6741, 2288} \begin {gather*} \frac {e^{2 e^5-2 x} \left (x^3+x \log (4)\right )}{40 x^2 \left (x^2+\log (4)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 28
Rule 1594
Rule 2288
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2 e^5-2 x} \left (-3 x^2-2 x^3+(-1-2 x) \log (4)\right )}{x^2 \left (40 x^4+80 x^2 \log (4)+40 \log ^2(4)\right )} \, dx\\ &=40 \int \frac {e^{2 e^5-2 x} \left (-3 x^2-2 x^3+(-1-2 x) \log (4)\right )}{x^2 \left (40 x^2+40 \log (4)\right )^2} \, dx\\ &=40 \int \frac {e^{2 e^5-2 x} \left (-3 x^2-2 x^3-\log (4)-2 x \log (4)\right )}{x^2 \left (40 x^2+40 \log (4)\right )^2} \, dx\\ &=\frac {e^{2 e^5-2 x} \left (x^3+x \log (4)\right )}{40 x^2 \left (x^2+\log (4)\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 36, normalized size = 1.38 \begin {gather*} \frac {e^{2 e^5-2 x} \left (2 x^3+x \log (16)\right )}{80 x^2 \left (x^2+\log (4)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 22, normalized size = 0.85 \begin {gather*} \frac {e^{\left (-2 \, x + 2 \, e^{5}\right )}}{40 \, {\left (x^{3} + 2 \, x \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.56, size = 22, normalized size = 0.85 \begin {gather*} \frac {e^{\left (-2 \, x + 2 \, e^{5}\right )}}{40 \, {\left (x^{3} + 2 \, x \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 25, normalized size = 0.96
method | result | size |
gosper | \(\frac {{\mathrm e}^{2 \,{\mathrm e}^{5}-2 x}}{40 \left (x^{2}+2 \ln \relax (2)\right ) x}\) | \(25\) |
norman | \(\frac {{\mathrm e}^{2 \,{\mathrm e}^{5}-2 x}}{40 \left (x^{2}+2 \ln \relax (2)\right ) x}\) | \(25\) |
risch | \(\frac {{\mathrm e}^{2 \,{\mathrm e}^{5}-2 x}}{40 \left (x^{2}+2 \ln \relax (2)\right ) x}\) | \(25\) |
derivativedivides | \(\text {Expression too large to display}\) | \(2581\) |
default | \(\text {Expression too large to display}\) | \(2581\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 22, normalized size = 0.85 \begin {gather*} \frac {e^{\left (-2 \, x + 2 \, e^{5}\right )}}{40 \, {\left (x^{3} + 2 \, x \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.08, size = 23, normalized size = 0.88 \begin {gather*} \frac {{\mathrm {e}}^{2\,{\mathrm {e}}^5}\,{\mathrm {e}}^{-2\,x}}{40\,\left (x^3+2\,\ln \relax (2)\,x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 20, normalized size = 0.77 \begin {gather*} \frac {e^{- 2 x + 2 e^{5}}}{40 x^{3} + 80 x \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________