Optimal. Leaf size=21 \[ \frac {e^7}{2-e^{-4 x} (-5+x)^4+x} \]
________________________________________________________________________________________
Rubi [F] time = 6.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-e^{7+8 x}+e^{7+4 x} \left (-3000+2300 x-660 x^2+84 x^3-4 x^4\right )}{390625-625000 x+437500 x^2-175000 x^3+43750 x^4-7000 x^5+700 x^6-40 x^7+x^8+e^{8 x} \left (4+4 x+x^2\right )+e^{4 x} \left (-2500+750 x+400 x^2-220 x^3+36 x^4-2 x^5\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{7+4 x} \left (-e^{4 x}-4 (-6+x) (-5+x)^3\right )}{\left ((-5+x)^4-e^{4 x} (2+x)\right )^2} \, dx\\ &=\int \left (-\frac {e^{7+4 x} (-5+x)^3 \left (-53-15 x+4 x^2\right )}{(2+x) \left (625-2 e^{4 x}-500 x-e^{4 x} x+150 x^2-20 x^3+x^4\right )^2}+\frac {e^{7+4 x}}{(2+x) \left (625-2 e^{4 x}-500 x-e^{4 x} x+150 x^2-20 x^3+x^4\right )}\right ) \, dx\\ &=-\int \frac {e^{7+4 x} (-5+x)^3 \left (-53-15 x+4 x^2\right )}{(2+x) \left (625-2 e^{4 x}-500 x-e^{4 x} x+150 x^2-20 x^3+x^4\right )^2} \, dx+\int \frac {e^{7+4 x}}{(2+x) \left (625-2 e^{4 x}-500 x-e^{4 x} x+150 x^2-20 x^3+x^4\right )} \, dx\\ &=-\int \frac {e^{7+4 x} (5-x)^3 \left (53+15 x-4 x^2\right )}{(2+x) \left ((-5+x)^4-e^{4 x} (2+x)\right )^2} \, dx+\int \frac {e^{7+4 x}}{(2+x) \left ((-5+x)^4-e^{4 x} (2+x)\right )} \, dx\\ &=\int \frac {e^{7+4 x}}{(2+x) \left ((-5+x)^4-e^{4 x} (2+x)\right )} \, dx-\int \left (\frac {2112 e^{7+4 x}}{\left (-625+2 e^{4 x}+500 x+e^{4 x} x-150 x^2+20 x^3-x^4\right )^2}-\frac {2106 e^{7+4 x} x}{\left (625-2 e^{4 x}-500 x-e^{4 x} x+150 x^2-20 x^3+x^4\right )^2}+\frac {638 e^{7+4 x} x^2}{\left (625-2 e^{4 x}-500 x-e^{4 x} x+150 x^2-20 x^3+x^4\right )^2}-\frac {83 e^{7+4 x} x^3}{\left (625-2 e^{4 x}-500 x-e^{4 x} x+150 x^2-20 x^3+x^4\right )^2}+\frac {4 e^{7+4 x} x^4}{\left (625-2 e^{4 x}-500 x-e^{4 x} x+150 x^2-20 x^3+x^4\right )^2}+\frac {2401 e^{7+4 x}}{(2+x) \left (625-2 e^{4 x}-500 x-e^{4 x} x+150 x^2-20 x^3+x^4\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {e^{7+4 x} x^4}{\left (625-2 e^{4 x}-500 x-e^{4 x} x+150 x^2-20 x^3+x^4\right )^2} \, dx\right )+83 \int \frac {e^{7+4 x} x^3}{\left (625-2 e^{4 x}-500 x-e^{4 x} x+150 x^2-20 x^3+x^4\right )^2} \, dx-638 \int \frac {e^{7+4 x} x^2}{\left (625-2 e^{4 x}-500 x-e^{4 x} x+150 x^2-20 x^3+x^4\right )^2} \, dx+2106 \int \frac {e^{7+4 x} x}{\left (625-2 e^{4 x}-500 x-e^{4 x} x+150 x^2-20 x^3+x^4\right )^2} \, dx-2112 \int \frac {e^{7+4 x}}{\left (-625+2 e^{4 x}+500 x+e^{4 x} x-150 x^2+20 x^3-x^4\right )^2} \, dx-2401 \int \frac {e^{7+4 x}}{(2+x) \left (625-2 e^{4 x}-500 x-e^{4 x} x+150 x^2-20 x^3+x^4\right )^2} \, dx+\int \frac {e^{7+4 x}}{(2+x) \left ((-5+x)^4-e^{4 x} (2+x)\right )} \, dx\\ &=-\left (4 \int \frac {e^{7+4 x} x^4}{\left ((-5+x)^4-e^{4 x} (2+x)\right )^2} \, dx\right )+83 \int \frac {e^{7+4 x} x^3}{\left ((-5+x)^4-e^{4 x} (2+x)\right )^2} \, dx-638 \int \frac {e^{7+4 x} x^2}{\left ((-5+x)^4-e^{4 x} (2+x)\right )^2} \, dx+2106 \int \frac {e^{7+4 x} x}{\left ((-5+x)^4-e^{4 x} (2+x)\right )^2} \, dx-2112 \int \frac {e^{7+4 x}}{\left ((-5+x)^4-e^{4 x} (2+x)\right )^2} \, dx-2401 \int \frac {e^{7+4 x}}{(2+x) \left ((-5+x)^4-e^{4 x} (2+x)\right )^2} \, dx+\int \frac {e^{7+4 x}}{(2+x) \left ((-5+x)^4-e^{4 x} (2+x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.34, size = 27, normalized size = 1.29 \begin {gather*} \frac {e^{7+4 x}}{-(-5+x)^4+e^{4 x} (2+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.69, size = 43, normalized size = 2.05 \begin {gather*} -\frac {e^{\left (4 \, x + 14\right )}}{{\left (x^{4} - 20 \, x^{3} + 150 \, x^{2} - 500 \, x + 625\right )} e^{7} - {\left (x + 2\right )} e^{\left (4 \, x + 7\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 41, normalized size = 1.95 \begin {gather*} -\frac {e^{\left (4 \, x + 7\right )}}{x^{4} - 20 \, x^{3} + 150 \, x^{2} - x e^{\left (4 \, x\right )} - 500 \, x - 2 \, e^{\left (4 \, x\right )} + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 70, normalized size = 3.33
method | result | size |
risch | \(\frac {{\mathrm e}^{7}}{2+x}-\frac {{\mathrm e}^{7} \left (x^{4}-20 x^{3}+150 x^{2}-500 x +625\right )}{\left (2+x \right ) \left (-x \,{\mathrm e}^{4 x}+x^{4}-2 \,{\mathrm e}^{4 x}-20 x^{3}+150 x^{2}-500 x +625\right )}\) | \(70\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 37, normalized size = 1.76 \begin {gather*} -\frac {e^{\left (4 \, x + 7\right )}}{x^{4} - 20 \, x^{3} + 150 \, x^{2} - {\left (x + 2\right )} e^{\left (4 \, x\right )} - 500 \, x + 625} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int -\frac {{\mathrm {e}}^{8\,x}\,{\mathrm {e}}^7+{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^7\,\left (4\,x^4-84\,x^3+660\,x^2-2300\,x+3000\right )}{{\mathrm {e}}^{8\,x}\,\left (x^2+4\,x+4\right )-625000\,x+{\mathrm {e}}^{4\,x}\,\left (-2\,x^5+36\,x^4-220\,x^3+400\,x^2+750\,x-2500\right )+437500\,x^2-175000\,x^3+43750\,x^4-7000\,x^5+700\,x^6-40\,x^7+x^8+390625} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.39, size = 78, normalized size = 3.71 \begin {gather*} \frac {x^{4} e^{7} - 20 x^{3} e^{7} + 150 x^{2} e^{7} - 500 x e^{7} + 625 e^{7}}{- x^{5} + 18 x^{4} - 110 x^{3} + 200 x^{2} + 375 x + \left (x^{2} + 4 x + 4\right ) e^{4 x} - 1250} + \frac {e^{7}}{x + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________