Optimal. Leaf size=20 \[ 4 e^{8+2 e^{4+x} x (1+x)} x^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.06, antiderivative size = 56, normalized size of antiderivative = 2.80, number of steps used = 1, number of rules used = 1, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {2288} \begin {gather*} \frac {4 e^{2 e^{x+4} \left (x^2+x\right )+x+12} \left (x^4+3 x^3+x^2\right )}{e^{x+4} \left (x^2+x\right )+e^{x+4} (2 x+1)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {4 e^{12+x+2 e^{4+x} \left (x+x^2\right )} \left (x^2+3 x^3+x^4\right )}{e^{4+x} (1+2 x)+e^{4+x} \left (x+x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 20, normalized size = 1.00 \begin {gather*} 4 e^{8+2 e^{4+x} x (1+x)} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 19, normalized size = 0.95 \begin {gather*} 4 \, x^{2} e^{\left (2 \, {\left (x^{2} + x\right )} e^{\left (x + 4\right )} + 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 8 \, {\left ({\left (x^{4} + 3 \, x^{3} + x^{2}\right )} e^{\left (x + 4\right )} + x\right )} e^{\left (2 \, {\left (x^{2} + x\right )} e^{\left (x + 4\right )} + 8\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 21, normalized size = 1.05
method | result | size |
norman | \(4 x^{2} {\mathrm e}^{2 \left (x^{2}+x \right ) {\mathrm e}^{4+x}+8}\) | \(21\) |
risch | \(4 x^{2} {\mathrm e}^{2 x^{2} {\mathrm e}^{4+x}+2 x \,{\mathrm e}^{4+x}+8}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.75, size = 24, normalized size = 1.20 \begin {gather*} 4 \, x^{2} e^{\left (2 \, x^{2} e^{\left (x + 4\right )} + 2 \, x e^{\left (x + 4\right )} + 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.86, size = 25, normalized size = 1.25 \begin {gather*} 4\,x^2\,{\mathrm {e}}^8\,{\mathrm {e}}^{2\,x\,{\mathrm {e}}^4\,{\mathrm {e}}^x}\,{\mathrm {e}}^{2\,x^2\,{\mathrm {e}}^4\,{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 19, normalized size = 0.95 \begin {gather*} 4 x^{2} e^{2 \left (x^{2} + x\right ) e^{x + 4} + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________