Optimal. Leaf size=31 \[ 1+\left (\log (2)+e^3 \left (2-3 x-x^2-\frac {9}{x-\log (x)}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 1.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^6 \left (-162+198 x-90 x^2-18 x^3-6 x^4-10 x^5-18 x^6-4 x^7\right )+e^3 \left (18 x-18 x^2+6 x^4+4 x^5\right ) \log (2)+\left (e^6 \left (-36+90 x+72 x^2+18 x^3+30 x^4+54 x^5+12 x^6\right )+e^3 \left (-18+18 x-18 x^3-12 x^4\right ) \log (2)\right ) \log (x)+\left (e^6 \left (-54 x-30 x^3-54 x^4-12 x^5\right )+e^3 \left (18 x^2+12 x^3\right ) \log (2)\right ) \log ^2(x)+\left (e^6 \left (-12 x+10 x^2+18 x^3+4 x^4\right )+e^3 \left (-6 x-4 x^2\right ) \log (2)\right ) \log ^3(x)}{-x^4+3 x^3 \log (x)-3 x^2 \log ^2(x)+x \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^3 \left (e^3 \left (9-2 x+3 x^2+x^3\right )-x \log (2)+\left (-e^3 \left (-2+3 x+x^2\right )+\log (2)\right ) \log (x)\right ) \left (9-9 x+3 x^3+2 x^4-2 x^2 (3+2 x) \log (x)+x (3+2 x) \log ^2(x)\right )}{x (x-\log (x))^3} \, dx\\ &=\left (2 e^3\right ) \int \frac {\left (e^3 \left (9-2 x+3 x^2+x^3\right )-x \log (2)+\left (-e^3 \left (-2+3 x+x^2\right )+\log (2)\right ) \log (x)\right ) \left (9-9 x+3 x^3+2 x^4-2 x^2 (3+2 x) \log (x)+x (3+2 x) \log ^2(x)\right )}{x (x-\log (x))^3} \, dx\\ &=\left (2 e^3\right ) \int \left ((3+2 x) \left (-2 e^3+3 e^3 x+e^3 x^2-\log (2)\right )-\frac {81 e^3 (-1+x)}{x (x-\log (x))^3}-\frac {9 (-1+x) \left (-2 e^3+3 e^3 x+e^3 x^2-\log (2)\right )}{x (x-\log (x))^2}+\frac {9 e^3 (3+2 x)}{x-\log (x)}\right ) \, dx\\ &=\left (2 e^3\right ) \int (3+2 x) \left (-2 e^3+3 e^3 x+e^3 x^2-\log (2)\right ) \, dx-\left (18 e^3\right ) \int \frac {(-1+x) \left (-2 e^3+3 e^3 x+e^3 x^2-\log (2)\right )}{x (x-\log (x))^2} \, dx+\left (18 e^6\right ) \int \frac {3+2 x}{x-\log (x)} \, dx-\left (162 e^6\right ) \int \frac {-1+x}{x (x-\log (x))^3} \, dx\\ &=\left (2 e^3-3 e^3 x-e^3 x^2+\log (2)\right )^2+\frac {81 e^6}{(x-\log (x))^2}-\left (18 e^3\right ) \int \left (\frac {2 e^3 x}{(x-\log (x))^2}+\frac {e^3 x^2}{(x-\log (x))^2}+\frac {2 e^3+\log (2)}{x (x-\log (x))^2}-\frac {5 e^3 \left (1+\frac {\log (2)}{5 e^3}\right )}{(x-\log (x))^2}\right ) \, dx+\left (18 e^6\right ) \int \left (\frac {3}{x-\log (x)}+\frac {2 x}{x-\log (x)}\right ) \, dx\\ &=\left (2 e^3-3 e^3 x-e^3 x^2+\log (2)\right )^2+\frac {81 e^6}{(x-\log (x))^2}-\left (18 e^6\right ) \int \frac {x^2}{(x-\log (x))^2} \, dx-\left (36 e^6\right ) \int \frac {x}{(x-\log (x))^2} \, dx+\left (36 e^6\right ) \int \frac {x}{x-\log (x)} \, dx+\left (54 e^6\right ) \int \frac {1}{x-\log (x)} \, dx-\left (18 e^3 \left (2 e^3+\log (2)\right )\right ) \int \frac {1}{x (x-\log (x))^2} \, dx+\left (18 e^3 \left (5 e^3+\log (2)\right )\right ) \int \frac {1}{(x-\log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.11, size = 85, normalized size = 2.74 \begin {gather*} e^3 \left (6 e^3 x^3+e^3 x^4-6 x \left (2 e^3+\log (2)\right )+x^2 \left (5 e^3-\log (4)\right )+\frac {81 e^3}{(x-\log (x))^2}+\frac {18 \left (e^3 \left (-2+3 x+x^2\right )-\log (2)\right )}{x-\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.89, size = 157, normalized size = 5.06 \begin {gather*} -\frac {2 \, {\left (x^{4} + 3 \, x^{3} + 9 \, x\right )} e^{3} \log \relax (2) + {\left (2 \, {\left (x^{2} + 3 \, x\right )} e^{3} \log \relax (2) - {\left (x^{4} + 6 \, x^{3} + 5 \, x^{2} - 12 \, x\right )} e^{6}\right )} \log \relax (x)^{2} - {\left (x^{6} + 6 \, x^{5} + 5 \, x^{4} + 6 \, x^{3} + 54 \, x^{2} - 36 \, x + 81\right )} e^{6} - 2 \, {\left ({\left (2 \, x^{3} + 6 \, x^{2} + 9\right )} e^{3} \log \relax (2) - {\left (x^{5} + 6 \, x^{4} + 5 \, x^{3} - 3 \, x^{2} + 27 \, x - 18\right )} e^{6}\right )} \log \relax (x)}{x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.53, size = 229, normalized size = 7.39 \begin {gather*} \frac {x^{6} e^{6} - 2 \, x^{5} e^{6} \log \relax (x) + x^{4} e^{6} \log \relax (x)^{2} + 6 \, x^{5} e^{6} - 2 \, x^{4} e^{3} \log \relax (2) - 12 \, x^{4} e^{6} \log \relax (x) + 4 \, x^{3} e^{3} \log \relax (2) \log \relax (x) + 6 \, x^{3} e^{6} \log \relax (x)^{2} - 2 \, x^{2} e^{3} \log \relax (2) \log \relax (x)^{2} + 5 \, x^{4} e^{6} - 6 \, x^{3} e^{3} \log \relax (2) - 10 \, x^{3} e^{6} \log \relax (x) + 12 \, x^{2} e^{3} \log \relax (2) \log \relax (x) + 5 \, x^{2} e^{6} \log \relax (x)^{2} - 6 \, x e^{3} \log \relax (2) \log \relax (x)^{2} + 6 \, x^{3} e^{6} + 6 \, x^{2} e^{6} \log \relax (x) - 12 \, x e^{6} \log \relax (x)^{2} + 54 \, x^{2} e^{6} - 18 \, x e^{3} \log \relax (2) - 54 \, x e^{6} \log \relax (x) + 18 \, e^{3} \log \relax (2) \log \relax (x) - 36 \, x e^{6} + 36 \, e^{6} \log \relax (x) + 81 \, e^{6}}{x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 107, normalized size = 3.45
method | result | size |
risch | \({\mathrm e}^{3} x \left (x^{3} {\mathrm e}^{3}+6 x^{2} {\mathrm e}^{3}+5 x \,{\mathrm e}^{3}-2 x \ln \relax (2)-12 \,{\mathrm e}^{3}-6 \ln \relax (2)\right )+\frac {9 \,{\mathrm e}^{3} \left (2 x^{3} {\mathrm e}^{3}-2 \ln \relax (x ) {\mathrm e}^{3} x^{2}+6 x^{2} {\mathrm e}^{3}-6 x \,{\mathrm e}^{3} \ln \relax (x )-4 x \,{\mathrm e}^{3}+4 \ln \relax (x ) {\mathrm e}^{3}-2 x \ln \relax (2)+2 \ln \relax (2) \ln \relax (x )+9 \,{\mathrm e}^{3}\right )}{\left (x -\ln \relax (x )\right )^{2}}\) | \(107\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.62, size = 196, normalized size = 6.32 \begin {gather*} \frac {x^{6} e^{6} + 6 \, x^{5} e^{6} - {\left (2 \, e^{3} \log \relax (2) - 5 \, e^{6}\right )} x^{4} - 6 \, {\left (e^{3} \log \relax (2) - e^{6}\right )} x^{3} + 54 \, x^{2} e^{6} + {\left (x^{4} e^{6} + 6 \, x^{3} e^{6} - {\left (2 \, e^{3} \log \relax (2) - 5 \, e^{6}\right )} x^{2} - 6 \, {\left (e^{3} \log \relax (2) + 2 \, e^{6}\right )} x\right )} \log \relax (x)^{2} - 18 \, {\left (e^{3} \log \relax (2) + 2 \, e^{6}\right )} x - 2 \, {\left (x^{5} e^{6} + 6 \, x^{4} e^{6} - {\left (2 \, e^{3} \log \relax (2) - 5 \, e^{6}\right )} x^{3} - 3 \, {\left (2 \, e^{3} \log \relax (2) + e^{6}\right )} x^{2} + 27 \, x e^{6} - 9 \, e^{3} \log \relax (2) - 18 \, e^{6}\right )} \log \relax (x) + 81 \, e^{6}}{x^{2} - 2 \, x \log \relax (x) + \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.94, size = 231, normalized size = 7.45 \begin {gather*} \frac {{\mathrm {e}}^6\,x^8-2\,{\mathrm {e}}^6\,x^7\,\ln \relax (x)+6\,{\mathrm {e}}^6\,x^7+{\mathrm {e}}^6\,x^6\,{\ln \relax (x)}^2-12\,{\mathrm {e}}^6\,x^6\,\ln \relax (x)+\left (5\,{\mathrm {e}}^6-2\,{\mathrm {e}}^3\,\ln \relax (2)\right )\,x^6+6\,{\mathrm {e}}^6\,x^5\,{\ln \relax (x)}^2+\left (4\,{\mathrm {e}}^3\,\ln \relax (2)-10\,{\mathrm {e}}^6\right )\,x^5\,\ln \relax (x)+6\,{\mathrm {e}}^3\,\left ({\mathrm {e}}^3-\ln \relax (2)\right )\,x^5+\left (5\,{\mathrm {e}}^6-2\,{\mathrm {e}}^3\,\ln \relax (2)\right )\,x^4\,{\ln \relax (x)}^2+\left (6\,{\mathrm {e}}^6+12\,{\mathrm {e}}^3\,\ln \relax (2)\right )\,x^4\,\ln \relax (x)+54\,{\mathrm {e}}^6\,x^4+\left (-12\,{\mathrm {e}}^6-6\,{\mathrm {e}}^3\,\ln \relax (2)\right )\,x^3\,{\ln \relax (x)}^2-54\,{\mathrm {e}}^6\,x^3\,\ln \relax (x)-18\,{\mathrm {e}}^3\,\left (2\,{\mathrm {e}}^3+\ln \relax (2)\right )\,x^3+18\,{\mathrm {e}}^3\,\left (2\,{\mathrm {e}}^3+\ln \relax (2)\right )\,x^2\,\ln \relax (x)+81\,{\mathrm {e}}^6\,x^2}{x^4-2\,x^3\,\ln \relax (x)+x^2\,{\ln \relax (x)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.26, size = 134, normalized size = 4.32 \begin {gather*} x^{4} e^{6} + 6 x^{3} e^{6} + x^{2} \left (- 2 e^{3} \log {\relax (2 )} + 5 e^{6}\right ) + x \left (- 12 e^{6} - 6 e^{3} \log {\relax (2 )}\right ) + \frac {18 x^{3} e^{6} + 54 x^{2} e^{6} - 36 x e^{6} - 18 x e^{3} \log {\relax (2 )} + \left (- 18 x^{2} e^{6} - 54 x e^{6} + 18 e^{3} \log {\relax (2 )} + 36 e^{6}\right ) \log {\relax (x )} + 81 e^{6}}{x^{2} - 2 x \log {\relax (x )} + \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________