Optimal. Leaf size=27 \[ \frac {x^2 \log (\log (4))}{(2-x) (-4+x)+\frac {1}{4 x}+x} \]
________________________________________________________________________________________
Rubi [B] time = 0.35, antiderivative size = 70, normalized size of antiderivative = 2.59, number of steps used = 8, number of rules used = 5, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.096, Rules used = {12, 1594, 6688, 2102, 1588} \begin {gather*} \frac {28 x^2 \log (\log (4))}{-4 x^3+28 x^2-32 x+1}-\frac {32 x \log (\log (4))}{-4 x^3+28 x^2-32 x+1}+\frac {\log (\log (4))}{-4 x^3+28 x^2-32 x+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1588
Rule 1594
Rule 2102
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log (\log (4)) \int \frac {12 x^2-256 x^3+112 x^4}{1-64 x+1080 x^2-1800 x^3+1040 x^4-224 x^5+16 x^6} \, dx\\ &=\log (\log (4)) \int \frac {x^2 \left (12-256 x+112 x^2\right )}{1-64 x+1080 x^2-1800 x^3+1040 x^4-224 x^5+16 x^6} \, dx\\ &=\log (\log (4)) \int \frac {4 x^2 \left (3-64 x+28 x^2\right )}{\left (1-32 x+28 x^2-4 x^3\right )^2} \, dx\\ &=(4 \log (\log (4))) \int \frac {x^2 \left (3-64 x+28 x^2\right )}{\left (1-32 x+28 x^2-4 x^3\right )^2} \, dx\\ &=\frac {28 x^2 \log (\log (4))}{1-32 x+28 x^2-4 x^3}+\log (\log (4)) \int \frac {-56 x+908 x^2-256 x^3}{\left (1-32 x+28 x^2-4 x^3\right )^2} \, dx\\ &=\frac {28 x^2 \log (\log (4))}{1-32 x+28 x^2-4 x^3}+\log (\log (4)) \int \frac {x \left (-56+908 x-256 x^2\right )}{\left (1-32 x+28 x^2-4 x^3\right )^2} \, dx\\ &=-\frac {32 x \log (\log (4))}{1-32 x+28 x^2-4 x^3}+\frac {28 x^2 \log (\log (4))}{1-32 x+28 x^2-4 x^3}+\frac {1}{8} \log (\log (4)) \int \frac {256-448 x+96 x^2}{\left (1-32 x+28 x^2-4 x^3\right )^2} \, dx\\ &=\frac {\log (\log (4))}{1-32 x+28 x^2-4 x^3}-\frac {32 x \log (\log (4))}{1-32 x+28 x^2-4 x^3}+\frac {28 x^2 \log (\log (4))}{1-32 x+28 x^2-4 x^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 32, normalized size = 1.19 \begin {gather*} \frac {4 \left (1-32 x+28 x^2\right ) \log (\log (4))}{4-128 x+112 x^2-16 x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 34, normalized size = 1.26 \begin {gather*} -\frac {{\left (28 \, x^{2} - 32 \, x + 1\right )} \log \left (2 \, \log \relax (2)\right )}{4 \, x^{3} - 28 \, x^{2} + 32 \, x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 34, normalized size = 1.26 \begin {gather*} -\frac {{\left (28 \, x^{2} - 32 \, x + 1\right )} \log \left (2 \, \log \relax (2)\right )}{4 \, x^{3} - 28 \, x^{2} + 32 \, x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 32, normalized size = 1.19
method | result | size |
norman | \(\frac {\left (-4 \ln \left (\ln \relax (2)\right )-4 \ln \relax (2)\right ) x^{3}}{4 x^{3}-28 x^{2}+32 x -1}\) | \(32\) |
default | \(\frac {4 \ln \left (2 \ln \relax (2)\right ) \left (-\frac {7}{4} x^{2}+2 x -\frac {1}{16}\right )}{x^{3}-7 x^{2}+8 x -\frac {1}{4}}\) | \(33\) |
risch | \(\frac {\left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right ) \left (-7 x^{2}+8 x -\frac {1}{4}\right )}{x^{3}-7 x^{2}+8 x -\frac {1}{4}}\) | \(33\) |
gosper | \(-\frac {\left (28 x^{2}-32 x +1\right ) \ln \left (2 \ln \relax (2)\right )}{4 x^{3}-28 x^{2}+32 x -1}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 34, normalized size = 1.26 \begin {gather*} -\frac {{\left (28 \, x^{2} - 32 \, x + 1\right )} \log \left (2 \, \log \relax (2)\right )}{4 \, x^{3} - 28 \, x^{2} + 32 \, x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 34, normalized size = 1.26 \begin {gather*} -\frac {\ln \left (2\,\ln \relax (2)\right )\,\left (28\,x^2-32\,x+1\right )}{4\,x^3-28\,x^2+32\,x-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.06, size = 53, normalized size = 1.96 \begin {gather*} \frac {x^{2} \left (- 28 \log {\relax (2 )} - 28 \log {\left (\log {\relax (2 )} \right )}\right ) + x \left (32 \log {\left (\log {\relax (2 )} \right )} + 32 \log {\relax (2 )}\right ) - \log {\relax (2 )} - \log {\left (\log {\relax (2 )} \right )}}{4 x^{3} - 28 x^{2} + 32 x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________