Optimal. Leaf size=16 \[ \frac {e^5}{-5+x+x (4+x)^8} \]
________________________________________________________________________________________
Rubi [B] time = 3.00, antiderivative size = 52, normalized size of antiderivative = 3.25, number of steps used = 6, number of rules used = 4, integrand size = 134, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.030, Rules used = {12, 2074, 2101, 6742} \begin {gather*} -\frac {e^5}{-x^9-32 x^8-448 x^7-3584 x^6-17920 x^5-57344 x^4-114688 x^3-131072 x^2-65537 x+5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2074
Rule 2101
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^5 \int \frac {-65537-262144 x-344064 x^2-229376 x^3-89600 x^4-21504 x^5-3136 x^6-256 x^7-9 x^8}{25-655370 x+4293787649 x^2+17178984448 x^3+32211910656 x^4+37580899328 x^5+30534533120 x^6+18320722560 x^7+8396997184 x^8+2998927414 x^9+843448322 x^{10}+187432960 x^{11}+32800768 x^{12}+4472832 x^{13}+465920 x^{14}+35840 x^{15}+1920 x^{16}+64 x^{17}+x^{18}} \, dx\\ &=e^5 \int \left (-\frac {65537}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2}-\frac {262144 x}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2}-\frac {344064 x^2}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2}-\frac {229376 x^3}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2}-\frac {89600 x^4}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2}-\frac {21504 x^5}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2}-\frac {3136 x^6}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2}-\frac {256 x^7}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2}-\frac {9 x^8}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2}\right ) \, dx\\ &=-\left (\left (9 e^5\right ) \int \frac {x^8}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2} \, dx\right )-\left (256 e^5\right ) \int \frac {x^7}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2} \, dx-\left (3136 e^5\right ) \int \frac {x^6}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2} \, dx-\left (21504 e^5\right ) \int \frac {x^5}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2} \, dx-\left (65537 e^5\right ) \int \frac {1}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2} \, dx-\left (89600 e^5\right ) \int \frac {x^4}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2} \, dx-\left (229376 e^5\right ) \int \frac {x^3}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2} \, dx-\left (262144 e^5\right ) \int \frac {x}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2} \, dx-\left (344064 e^5\right ) \int \frac {x^2}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2} \, dx\\ &=-\frac {e^5}{5-65537 x-131072 x^2-114688 x^3-57344 x^4-17920 x^5-3584 x^6-448 x^7-32 x^8-x^9}-e^5 \int \frac {-65537-262144 x-344064 x^2-229376 x^3-89600 x^4-21504 x^5-3136 x^6-256 x^7}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2} \, dx-\left (256 e^5\right ) \int \frac {x^7}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2} \, dx-\left (3136 e^5\right ) \int \frac {x^6}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2} \, dx-\left (21504 e^5\right ) \int \frac {x^5}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2} \, dx-\left (65537 e^5\right ) \int \frac {1}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2} \, dx-\left (89600 e^5\right ) \int \frac {x^4}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2} \, dx-\left (229376 e^5\right ) \int \frac {x^3}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2} \, dx-\left (262144 e^5\right ) \int \frac {x}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2} \, dx-\left (344064 e^5\right ) \int \frac {x^2}{\left (-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.02, size = 49, normalized size = 3.06 \begin {gather*} \frac {e^5}{-5+65537 x+131072 x^2+114688 x^3+57344 x^4+17920 x^5+3584 x^6+448 x^7+32 x^8+x^9} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.73, size = 48, normalized size = 3.00 \begin {gather*} \frac {e^{5}}{x^{9} + 32 \, x^{8} + 448 \, x^{7} + 3584 \, x^{6} + 17920 \, x^{5} + 57344 \, x^{4} + 114688 \, x^{3} + 131072 \, x^{2} + 65537 \, x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.66, size = 48, normalized size = 3.00 \begin {gather*} \frac {e^{5}}{x^{9} + 32 \, x^{8} + 448 \, x^{7} + 3584 \, x^{6} + 17920 \, x^{5} + 57344 \, x^{4} + 114688 \, x^{3} + 131072 \, x^{2} + 65537 \, x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.09, size = 49, normalized size = 3.06
method | result | size |
gosper | \(\frac {{\mathrm e}^{5}}{x^{9}+32 x^{8}+448 x^{7}+3584 x^{6}+17920 x^{5}+57344 x^{4}+114688 x^{3}+131072 x^{2}+65537 x -5}\) | \(49\) |
default | \(\frac {{\mathrm e}^{5}}{x^{9}+32 x^{8}+448 x^{7}+3584 x^{6}+17920 x^{5}+57344 x^{4}+114688 x^{3}+131072 x^{2}+65537 x -5}\) | \(49\) |
norman | \(\frac {{\mathrm e}^{5}}{x^{9}+32 x^{8}+448 x^{7}+3584 x^{6}+17920 x^{5}+57344 x^{4}+114688 x^{3}+131072 x^{2}+65537 x -5}\) | \(49\) |
risch | \(\frac {{\mathrm e}^{5}}{x^{9}+32 x^{8}+448 x^{7}+3584 x^{6}+17920 x^{5}+57344 x^{4}+114688 x^{3}+131072 x^{2}+65537 x -5}\) | \(49\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 48, normalized size = 3.00 \begin {gather*} \frac {e^{5}}{x^{9} + 32 \, x^{8} + 448 \, x^{7} + 3584 \, x^{6} + 17920 \, x^{5} + 57344 \, x^{4} + 114688 \, x^{3} + 131072 \, x^{2} + 65537 \, x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.25, size = 48, normalized size = 3.00 \begin {gather*} \frac {{\mathrm {e}}^5}{x^9+32\,x^8+448\,x^7+3584\,x^6+17920\,x^5+57344\,x^4+114688\,x^3+131072\,x^2+65537\,x-5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.24, size = 46, normalized size = 2.88 \begin {gather*} \frac {e^{5}}{x^{9} + 32 x^{8} + 448 x^{7} + 3584 x^{6} + 17920 x^{5} + 57344 x^{4} + 114688 x^{3} + 131072 x^{2} + 65537 x - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________