Optimal. Leaf size=18 \[ \frac {5}{e^{22} x^4 (-1+\log (4-x))} \]
________________________________________________________________________________________
Rubi [F] time = 0.73, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-80+15 x+(80-20 x) \log (4-x)}{e^{22} \left (-4 x^5+x^6\right )+e^{22} \left (8 x^5-2 x^6\right ) \log (4-x)+e^{22} \left (-4 x^5+x^6\right ) \log ^2(4-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {80-15 x+20 (-4+x) \log (4-x)}{e^{22} (4-x) x^5 (1-\log (4-x))^2} \, dx\\ &=\frac {\int \frac {80-15 x+20 (-4+x) \log (4-x)}{(4-x) x^5 (1-\log (4-x))^2} \, dx}{e^{22}}\\ &=\frac {\int \left (-\frac {5}{(-4+x) x^4 (-1+\log (4-x))^2}-\frac {20}{x^5 (-1+\log (4-x))}\right ) \, dx}{e^{22}}\\ &=-\frac {5 \int \frac {1}{(-4+x) x^4 (-1+\log (4-x))^2} \, dx}{e^{22}}-\frac {20 \int \frac {1}{x^5 (-1+\log (4-x))} \, dx}{e^{22}}\\ &=-\frac {5 \int \left (\frac {1}{256 (-4+x) (-1+\log (4-x))^2}-\frac {1}{4 x^4 (-1+\log (4-x))^2}-\frac {1}{16 x^3 (-1+\log (4-x))^2}-\frac {1}{64 x^2 (-1+\log (4-x))^2}-\frac {1}{256 x (-1+\log (4-x))^2}\right ) \, dx}{e^{22}}-\frac {20 \int \frac {1}{x^5 (-1+\log (4-x))} \, dx}{e^{22}}\\ &=-\frac {5 \int \frac {1}{(-4+x) (-1+\log (4-x))^2} \, dx}{256 e^{22}}+\frac {5 \int \frac {1}{x (-1+\log (4-x))^2} \, dx}{256 e^{22}}+\frac {5 \int \frac {1}{x^2 (-1+\log (4-x))^2} \, dx}{64 e^{22}}+\frac {5 \int \frac {1}{x^3 (-1+\log (4-x))^2} \, dx}{16 e^{22}}+\frac {5 \int \frac {1}{x^4 (-1+\log (4-x))^2} \, dx}{4 e^{22}}-\frac {20 \int \frac {1}{x^5 (-1+\log (4-x))} \, dx}{e^{22}}\\ &=\frac {5 \int \frac {1}{x (-1+\log (4-x))^2} \, dx}{256 e^{22}}-\frac {5 \operatorname {Subst}\left (\int \frac {1}{x (-1+\log (x))^2} \, dx,x,4-x\right )}{256 e^{22}}+\frac {5 \int \frac {1}{x^2 (-1+\log (4-x))^2} \, dx}{64 e^{22}}+\frac {5 \int \frac {1}{x^3 (-1+\log (4-x))^2} \, dx}{16 e^{22}}+\frac {5 \int \frac {1}{x^4 (-1+\log (4-x))^2} \, dx}{4 e^{22}}-\frac {20 \int \frac {1}{x^5 (-1+\log (4-x))} \, dx}{e^{22}}\\ &=\frac {5 \int \frac {1}{x (-1+\log (4-x))^2} \, dx}{256 e^{22}}-\frac {5 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,-1+\log (4-x)\right )}{256 e^{22}}+\frac {5 \int \frac {1}{x^2 (-1+\log (4-x))^2} \, dx}{64 e^{22}}+\frac {5 \int \frac {1}{x^3 (-1+\log (4-x))^2} \, dx}{16 e^{22}}+\frac {5 \int \frac {1}{x^4 (-1+\log (4-x))^2} \, dx}{4 e^{22}}-\frac {20 \int \frac {1}{x^5 (-1+\log (4-x))} \, dx}{e^{22}}\\ &=-\frac {5}{256 e^{22} (1-\log (4-x))}+\frac {5 \int \frac {1}{x (-1+\log (4-x))^2} \, dx}{256 e^{22}}+\frac {5 \int \frac {1}{x^2 (-1+\log (4-x))^2} \, dx}{64 e^{22}}+\frac {5 \int \frac {1}{x^3 (-1+\log (4-x))^2} \, dx}{16 e^{22}}+\frac {5 \int \frac {1}{x^4 (-1+\log (4-x))^2} \, dx}{4 e^{22}}-\frac {20 \int \frac {1}{x^5 (-1+\log (4-x))} \, dx}{e^{22}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 18, normalized size = 1.00 \begin {gather*} \frac {5}{e^{22} x^4 (-1+\log (4-x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 24, normalized size = 1.33 \begin {gather*} \frac {5}{x^{4} e^{22} \log \left (-x + 4\right ) - x^{4} e^{22}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.04, size = 24, normalized size = 1.33 \begin {gather*} \frac {5}{x^{4} e^{22} \log \left (-x + 4\right ) - x^{4} e^{22}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 18, normalized size = 1.00
method | result | size |
risch | \(\frac {5 \,{\mathrm e}^{-22}}{\left (\ln \left (-x +4\right )-1\right ) x^{4}}\) | \(18\) |
norman | \(\frac {5 \,{\mathrm e}^{-22}}{\left (\ln \left (-x +4\right )-1\right ) x^{4}}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 24, normalized size = 1.33 \begin {gather*} \frac {5}{x^{4} e^{22} \log \left (-x + 4\right ) - x^{4} e^{22}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.39, size = 17, normalized size = 0.94 \begin {gather*} \frac {5\,{\mathrm {e}}^{-22}}{x^4\,\left (\ln \left (4-x\right )-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 19, normalized size = 1.06 \begin {gather*} \frac {5}{x^{4} e^{22} \log {\left (4 - x \right )} - x^{4} e^{22}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________