Optimal. Leaf size=23 \[ x+e^{-\frac {e^{e^x}}{5-\log (3)}} x \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {12, 2288} \begin {gather*} x+x e^{-\frac {e^{e^x}}{5-\log (3)}} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (-5+\log (3)+e^{\frac {e^{e^x}}{-5+\log (3)}} \left (-5+\log (3)+e^{e^x+x} x \log (x)+(-5+\log (3)) \log (x)\right )\right ) \, dx}{-5+\log (3)}\\ &=x+\frac {\int e^{\frac {e^{e^x}}{-5+\log (3)}} \left (-5+\log (3)+e^{e^x+x} x \log (x)+(-5+\log (3)) \log (x)\right ) \, dx}{-5+\log (3)}\\ &=x+e^{-\frac {e^{e^x}}{5-\log (3)}} x \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.52, size = 37, normalized size = 1.61 \begin {gather*} \frac {-5 x+x \log (3)+e^{\frac {e^{e^x}}{-5+\log (3)}} x (-5+\log (3)) \log (x)}{-5+\log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 17, normalized size = 0.74 \begin {gather*} x e^{\left (\frac {e^{\left (e^{x}\right )}}{\log \relax (3) - 5}\right )} \log \relax (x) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x e^{\left (x + e^{x}\right )} \log \relax (x) + {\left (\log \relax (3) - 5\right )} \log \relax (x) + \log \relax (3) - 5\right )} e^{\left (\frac {e^{\left (e^{x}\right )}}{\log \relax (3) - 5}\right )} + \log \relax (3) - 5}{\log \relax (3) - 5}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 18, normalized size = 0.78
method | result | size |
risch | \(x +x \ln \relax (x ) {\mathrm e}^{\frac {{\mathrm e}^{{\mathrm e}^{x}}}{\ln \relax (3)-5}}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 34, normalized size = 1.48 \begin {gather*} \frac {x {\left (\log \relax (3) - 5\right )} e^{\left (\frac {e^{\left (e^{x}\right )}}{\log \relax (3) - 5}\right )} \log \relax (x) + x \log \relax (3) - 5 \, x}{\log \relax (3) - 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.88, size = 17, normalized size = 0.74 \begin {gather*} x+x\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{{\mathrm {e}}^x}}{\ln \relax (3)-5}}\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 9.85, size = 17, normalized size = 0.74 \begin {gather*} x e^{\frac {e^{e^{x}}}{-5 + \log {\relax (3 )}}} \log {\relax (x )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________