Optimal. Leaf size=20 \[ \frac {x^3 \log \left (\frac {3 x}{e}\right )}{\frac {1}{e^5}-2 x} \]
________________________________________________________________________________________
Rubi [B] time = 0.39, antiderivative size = 78, normalized size of antiderivative = 3.90, number of steps used = 13, number of rules used = 10, integrand size = 60, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {27, 6688, 12, 6742, 77, 2357, 2295, 2304, 2314, 31} \begin {gather*} \frac {x^2}{2}-\frac {1}{2} x^2 \log (3 x)+\frac {x}{4 e^5}-\frac {1}{8 e^{10} \left (1-2 e^5 x\right )}+\frac {x \log (3 x)}{4 e^5 \left (1-2 e^5 x\right )}-\frac {x \log (3 x)}{4 e^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 31
Rule 77
Rule 2295
Rule 2304
Rule 2314
Rule 2357
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^5 x^2-2 e^{10} x^3+\left (3 e^5 x^2-4 e^{10} x^3\right ) \log \left (\frac {3 x}{e}\right )}{\left (-1+2 e^5 x\right )^2} \, dx\\ &=\int \frac {e^5 x^2 \left (-2+2 e^5 x+\left (3-4 e^5 x\right ) \log (3 x)\right )}{\left (1-2 e^5 x\right )^2} \, dx\\ &=e^5 \int \frac {x^2 \left (-2+2 e^5 x+\left (3-4 e^5 x\right ) \log (3 x)\right )}{\left (1-2 e^5 x\right )^2} \, dx\\ &=e^5 \int \left (\frac {2 x^2 \left (-1+e^5 x\right )}{\left (-1+2 e^5 x\right )^2}-\frac {x^2 \left (-3+4 e^5 x\right ) \log (3 x)}{\left (-1+2 e^5 x\right )^2}\right ) \, dx\\ &=-\left (e^5 \int \frac {x^2 \left (-3+4 e^5 x\right ) \log (3 x)}{\left (-1+2 e^5 x\right )^2} \, dx\right )+\left (2 e^5\right ) \int \frac {x^2 \left (-1+e^5 x\right )}{\left (-1+2 e^5 x\right )^2} \, dx\\ &=-\left (e^5 \int \left (\frac {\log (3 x)}{4 e^{10}}+\frac {x \log (3 x)}{e^5}-\frac {\log (3 x)}{4 e^{10} \left (-1+2 e^5 x\right )^2}\right ) \, dx\right )+\left (2 e^5\right ) \int \left (\frac {x}{4 e^5}-\frac {1}{8 e^{10} \left (-1+2 e^5 x\right )^2}-\frac {1}{8 e^{10} \left (-1+2 e^5 x\right )}\right ) \, dx\\ &=\frac {x^2}{4}-\frac {1}{8 e^{10} \left (1-2 e^5 x\right )}-\frac {\log \left (1-2 e^5 x\right )}{8 e^{10}}-\frac {\int \log (3 x) \, dx}{4 e^5}+\frac {\int \frac {\log (3 x)}{\left (-1+2 e^5 x\right )^2} \, dx}{4 e^5}-\int x \log (3 x) \, dx\\ &=\frac {x}{4 e^5}+\frac {x^2}{2}-\frac {1}{8 e^{10} \left (1-2 e^5 x\right )}-\frac {x \log (3 x)}{4 e^5}-\frac {1}{2} x^2 \log (3 x)+\frac {x \log (3 x)}{4 e^5 \left (1-2 e^5 x\right )}-\frac {\log \left (1-2 e^5 x\right )}{8 e^{10}}+\frac {\int \frac {1}{-1+2 e^5 x} \, dx}{4 e^5}\\ &=\frac {x}{4 e^5}+\frac {x^2}{2}-\frac {1}{8 e^{10} \left (1-2 e^5 x\right )}-\frac {x \log (3 x)}{4 e^5}-\frac {1}{2} x^2 \log (3 x)+\frac {x \log (3 x)}{4 e^5 \left (1-2 e^5 x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 53, normalized size = 2.65 \begin {gather*} \frac {\left (1-2 e^5 x\right ) \log (x)-\left (1-2 e^5 x+8 e^{15} x^3\right ) (-1+\log (3 x))}{8 e^{10} \left (-1+2 e^5 x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 22, normalized size = 1.10 \begin {gather*} -\frac {x^{3} e^{5} \log \left (3 \, x e^{\left (-1\right )}\right )}{2 \, x e^{5} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.42, size = 63, normalized size = 3.15 \begin {gather*} -\frac {8 \, x^{3} e^{15} \log \left (3 \, x\right ) - 8 \, x^{3} e^{15} - 2 \, x e^{5} \log \left (3 \, x\right ) + 2 \, x e^{5} \log \relax (x) + 2 \, x e^{5} + \log \left (3 \, x\right ) - \log \relax (x) - 1}{8 \, {\left (2 \, x e^{15} - e^{10}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 25, normalized size = 1.25
method | result | size |
norman | \(-\frac {x^{3} {\mathrm e}^{5} \ln \left (3 \,{\mathrm e}^{-1} x \right )}{2 x \,{\mathrm e}^{5}-1}\) | \(25\) |
risch | \(-\frac {\left (8 \,{\mathrm e}^{15} x^{3}-2 x \,{\mathrm e}^{5}+1\right ) {\mathrm e}^{-10} \ln \left (3 \,{\mathrm e}^{-1} x \right )}{8 \left (2 x \,{\mathrm e}^{5}-1\right )}-\frac {{\mathrm e}^{-10} \ln \relax (x )}{8}\) | \(41\) |
derivativedivides | \(\frac {{\mathrm e} \left (-\frac {9 \,{\mathrm e}^{5} x^{2}}{4 \,{\mathrm e}^{6}}-\frac {9 \,{\mathrm e} \,{\mathrm e}^{5} x}{4 \left ({\mathrm e}^{6}\right )^{2}}-\frac {9 \left ({\mathrm e}\right )^{2} {\mathrm e}^{5} {\mathrm e}^{-12} \ln \left (\frac {6 x \,{\mathrm e}^{6}}{{\mathrm e}}-3\right )}{8 \,{\mathrm e}^{6}}-\frac {9 \,{\mathrm e}^{5} {\mathrm e}^{6} x^{2} \ln \left (\frac {3 x}{{\mathrm e}}\right )}{2 \,{\mathrm e}^{12}}+\frac {9 \,{\mathrm e}^{5} {\mathrm e}^{6} x^{2}}{4 \,{\mathrm e}^{12}}-\frac {9 \,{\mathrm e} \,{\mathrm e}^{5} \left ({\mathrm e}^{6}\right )^{2} \ln \left (\frac {3 x}{{\mathrm e}}\right ) x}{\left ({\mathrm e}^{12}\right )^{2}}+\frac {9 \,{\mathrm e} \,{\mathrm e}^{5} \left ({\mathrm e}^{6}\right )^{2} x}{\left ({\mathrm e}^{12}\right )^{2}}+\frac {27 \,{\mathrm e} \,{\mathrm e}^{5} \ln \left (\frac {3 x}{{\mathrm e}}\right ) x}{4 \,{\mathrm e}^{12}}-\frac {27 \,{\mathrm e} \,{\mathrm e}^{5} x}{4 \,{\mathrm e}^{12}}+\frac {9 \left ({\mathrm e}\right )^{2} {\mathrm e}^{5} {\mathrm e}^{-12} \ln \left (\frac {3 x}{{\mathrm e}}\right ) \ln \left (\frac {-\frac {6 x \,{\mathrm e}^{12}}{{\mathrm e}}+3 \,{\mathrm e}^{6}+3 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}{3 \,{\mathrm e}^{6}+3 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}\right )}{16 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}-\frac {9 \left ({\mathrm e}\right )^{2} {\mathrm e}^{5} {\mathrm e}^{-12} \ln \left (\frac {3 x}{{\mathrm e}}\right ) \ln \left (\frac {-\frac {6 x \,{\mathrm e}^{12}}{{\mathrm e}}+3 \,{\mathrm e}^{6}-3 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}{3 \,{\mathrm e}^{6}-3 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}\right )}{16 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}+\frac {9 \left ({\mathrm e}\right )^{2} {\mathrm e}^{5} {\mathrm e}^{-12} \dilog \left (\frac {-\frac {6 x \,{\mathrm e}^{12}}{{\mathrm e}}+3 \,{\mathrm e}^{6}+3 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}{3 \,{\mathrm e}^{6}+3 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}\right )}{16 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}-\frac {9 \left ({\mathrm e}\right )^{2} {\mathrm e}^{5} {\mathrm e}^{-12} \dilog \left (\frac {-\frac {6 x \,{\mathrm e}^{12}}{{\mathrm e}}+3 \,{\mathrm e}^{6}-3 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}{3 \,{\mathrm e}^{6}-3 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}\right )}{16 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}\right )}{9}\) | \(444\) |
default | \(\frac {{\mathrm e} \left (-\frac {9 \,{\mathrm e}^{5} x^{2}}{4 \,{\mathrm e}^{6}}-\frac {9 \,{\mathrm e} \,{\mathrm e}^{5} x}{4 \left ({\mathrm e}^{6}\right )^{2}}-\frac {9 \left ({\mathrm e}\right )^{2} {\mathrm e}^{5} {\mathrm e}^{-12} \ln \left (\frac {6 x \,{\mathrm e}^{6}}{{\mathrm e}}-3\right )}{8 \,{\mathrm e}^{6}}-\frac {9 \,{\mathrm e}^{5} {\mathrm e}^{6} x^{2} \ln \left (\frac {3 x}{{\mathrm e}}\right )}{2 \,{\mathrm e}^{12}}+\frac {9 \,{\mathrm e}^{5} {\mathrm e}^{6} x^{2}}{4 \,{\mathrm e}^{12}}-\frac {9 \,{\mathrm e} \,{\mathrm e}^{5} \left ({\mathrm e}^{6}\right )^{2} \ln \left (\frac {3 x}{{\mathrm e}}\right ) x}{\left ({\mathrm e}^{12}\right )^{2}}+\frac {9 \,{\mathrm e} \,{\mathrm e}^{5} \left ({\mathrm e}^{6}\right )^{2} x}{\left ({\mathrm e}^{12}\right )^{2}}+\frac {27 \,{\mathrm e} \,{\mathrm e}^{5} \ln \left (\frac {3 x}{{\mathrm e}}\right ) x}{4 \,{\mathrm e}^{12}}-\frac {27 \,{\mathrm e} \,{\mathrm e}^{5} x}{4 \,{\mathrm e}^{12}}+\frac {9 \left ({\mathrm e}\right )^{2} {\mathrm e}^{5} {\mathrm e}^{-12} \ln \left (\frac {3 x}{{\mathrm e}}\right ) \ln \left (\frac {-\frac {6 x \,{\mathrm e}^{12}}{{\mathrm e}}+3 \,{\mathrm e}^{6}+3 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}{3 \,{\mathrm e}^{6}+3 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}\right )}{16 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}-\frac {9 \left ({\mathrm e}\right )^{2} {\mathrm e}^{5} {\mathrm e}^{-12} \ln \left (\frac {3 x}{{\mathrm e}}\right ) \ln \left (\frac {-\frac {6 x \,{\mathrm e}^{12}}{{\mathrm e}}+3 \,{\mathrm e}^{6}-3 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}{3 \,{\mathrm e}^{6}-3 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}\right )}{16 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}+\frac {9 \left ({\mathrm e}\right )^{2} {\mathrm e}^{5} {\mathrm e}^{-12} \dilog \left (\frac {-\frac {6 x \,{\mathrm e}^{12}}{{\mathrm e}}+3 \,{\mathrm e}^{6}+3 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}{3 \,{\mathrm e}^{6}+3 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}\right )}{16 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}-\frac {9 \left ({\mathrm e}\right )^{2} {\mathrm e}^{5} {\mathrm e}^{-12} \dilog \left (\frac {-\frac {6 x \,{\mathrm e}^{12}}{{\mathrm e}}+3 \,{\mathrm e}^{6}-3 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}{3 \,{\mathrm e}^{6}-3 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}\right )}{16 \sqrt {\left ({\mathrm e}^{6}\right )^{2}-{\mathrm e}^{12}}}\right )}{9}\) | \(444\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.78, size = 150, normalized size = 7.50 \begin {gather*} -\frac {1}{8} \, {\left (2 \, {\left (x^{2} e^{5} + 2 \, x\right )} e^{\left (-15\right )} + 3 \, e^{\left (-20\right )} \log \left (2 \, x e^{5} - 1\right ) - \frac {1}{2 \, x e^{25} - e^{20}}\right )} e^{10} + \frac {1}{8} \, {\left (2 \, x e^{\left (-10\right )} + 2 \, e^{\left (-15\right )} \log \left (2 \, x e^{5} - 1\right ) - \frac {1}{2 \, x e^{20} - e^{15}}\right )} e^{5} + \frac {1}{8} \, e^{\left (-10\right )} \log \left (2 \, x e^{5} - 1\right ) - \frac {4 \, x^{3} {\left (2 \, \log \relax (3) - 3\right )} e^{15} + 8 \, x^{3} e^{15} \log \relax (x) - 2 \, x^{2} e^{10} - 2 \, x {\left (\log \relax (3) - 2\right )} e^{5} + \log \relax (3) - 1}{8 \, {\left (2 \, x e^{15} - e^{10}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.12, size = 22, normalized size = 1.10 \begin {gather*} -\frac {x^3\,{\mathrm {e}}^5\,\left (\ln \left (3\,x\right )-1\right )}{2\,x\,{\mathrm {e}}^5-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.22, size = 44, normalized size = 2.20 \begin {gather*} - \frac {\log {\relax (x )}}{8 e^{10}} + \frac {\left (- 8 x^{3} e^{15} + 2 x e^{5} - 1\right ) \log {\left (\frac {3 x}{e} \right )}}{16 x e^{15} - 8 e^{10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________