3.12.21 \(\int \frac {e^x ((-6 x^3+21 x^4-12 x^5-12 x^6+e^8 (-6 x-3 x^2)+e^4 (12 x^2-18 x^3-12 x^4)) \log (4)+(2 x^4-2 e^4 x^4-6 x^5-4 x^6) \log ^2(4))}{9 e^8+9 x^2-36 x^3+36 x^4+e^4 (-18 x+36 x^2)+(12 e^4 x^2-12 x^3+24 x^4) \log (4)+4 x^4 \log ^2(4)} \, dx\)

Optimal. Leaf size=33 \[ \frac {e^x x^2}{\frac {2}{-2+\frac {-e^4+x}{x^2}}-\frac {3}{\log (4)}} \]

________________________________________________________________________________________

Rubi [C]  time = 9.37, antiderivative size = 1873, normalized size of antiderivative = 56.76, number of steps used = 33, number of rules used = 9, integrand size = 158, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {6, 6688, 12, 6742, 2176, 2194, 2270, 2178, 2177}

result too large to display

Warning: Unable to verify antiderivative.

[In]

Int[(E^x*((-6*x^3 + 21*x^4 - 12*x^5 - 12*x^6 + E^8*(-6*x - 3*x^2) + E^4*(12*x^2 - 18*x^3 - 12*x^4))*Log[4] + (
2*x^4 - 2*E^4*x^4 - 6*x^5 - 4*x^6)*Log[4]^2))/(9*E^8 + 9*x^2 - 36*x^3 + 36*x^4 + E^4*(-18*x + 36*x^2) + (12*E^
4*x^2 - 12*x^3 + 24*x^4)*Log[4] + 4*x^4*Log[4]^2),x]

[Out]

(-2*E^x*Log[4])/(3 + Log[4]) + (2*E^x*x*Log[4])/(3 + Log[4]) - (E^x*x^2*Log[4])/(3 + Log[4]) + (3*E^x*Log[4]*(
4 + Log[4]))/(2*(3 + Log[4])^2) - (3*E^x*x*Log[4]*(4 + Log[4]))/(2*(3 + Log[4])^2) + (E^x*Log[4]^2*(9 - 2*E^4*
(3 + Log[4]) + Log[16]))/(4*(3 + Log[4])^3) - ((I/8)*Sqrt[3]*E^((3 - I*Sqrt[-9 + 24*E^4*(3 + Log[4])])/(4*(3 +
 Log[4])))*ExpIntegralEi[-1/4*(3 - 4*x*(3 + Log[4]) - I*Sqrt[-9 + 24*E^4*(3 + Log[4])])/(3 + Log[4])]*Log[4]*(
16*E^8*Log[4]*(3 + Log[4])^2 + 9*Log[16] - 12*E^4*(3 + Log[4])*Log[256]))/((3 + Log[4])^3*(-3 + 8*E^4*(3 + Log
[4]))^(3/2)) + ((I/8)*Sqrt[3]*E^((3 + I*Sqrt[-9 + 24*E^4*(3 + Log[4])])/(4*(3 + Log[4])))*ExpIntegralEi[-1/4*(
3 - 4*x*(3 + Log[4]) + I*Sqrt[-9 + 24*E^4*(3 + Log[4])])/(3 + Log[4])]*Log[4]*(16*E^8*Log[4]*(3 + Log[4])^2 +
9*Log[16] - 12*E^4*(3 + Log[4])*Log[256]))/((3 + Log[4])^3*(-3 + 8*E^4*(3 + Log[4]))^(3/2)) - (E^((3 - I*Sqrt[
-9 + 24*E^4*(3 + Log[4])])/(4*(3 + Log[4])))*ExpIntegralEi[-1/4*(3 - 4*x*(3 + Log[4]) - I*Sqrt[-9 + 24*E^4*(3
+ Log[4])])/(3 + Log[4])]*Log[4]*(3 - I*Sqrt[-9 + 24*E^4*(3 + Log[4])])*(16*E^8*Log[4]*(3 + Log[4])^2 + 9*Log[
16] - 12*E^4*(3 + Log[4])*Log[256]))/(32*(3 + Log[4])^4*(3 - 8*E^4*(3 + Log[4]))) - (E^x*Log[4]*(3 - I*Sqrt[-9
 + 24*E^4*(3 + Log[4])])*(16*E^8*Log[4]*(3 + Log[4])^2 + 9*Log[16] - 12*E^4*(3 + Log[4])*Log[256]))/(8*(3 + Lo
g[4])^3*(3 - 8*E^4*(3 + Log[4]))*(3 - 4*x*(3 + Log[4]) - I*Sqrt[-9 + 24*E^4*(3 + Log[4])])) - (E^((3 + I*Sqrt[
-9 + 24*E^4*(3 + Log[4])])/(4*(3 + Log[4])))*ExpIntegralEi[-1/4*(3 - 4*x*(3 + Log[4]) + I*Sqrt[-9 + 24*E^4*(3
+ Log[4])])/(3 + Log[4])]*Log[4]*(3 + I*Sqrt[-9 + 24*E^4*(3 + Log[4])])*(16*E^8*Log[4]*(3 + Log[4])^2 + 9*Log[
16] - 12*E^4*(3 + Log[4])*Log[256]))/(32*(3 + Log[4])^4*(3 - 8*E^4*(3 + Log[4]))) - (E^x*Log[4]*(3 + I*Sqrt[-9
 + 24*E^4*(3 + Log[4])])*(16*E^8*Log[4]*(3 + Log[4])^2 + 9*Log[16] - 12*E^4*(3 + Log[4])*Log[256]))/(8*(3 + Lo
g[4])^3*(3 - 8*E^4*(3 + Log[4]))*(3 - 4*x*(3 + Log[4]) + I*Sqrt[-9 + 24*E^4*(3 + Log[4])])) + (3*E^((51 + 16*L
og[4] - I*Sqrt[-9 + 24*E^4*(3 + Log[4])])/(4*(3 + Log[4])))*ExpIntegralEi[-1/4*(3 - 4*x*(3 + Log[4]) - I*Sqrt[
-9 + 24*E^4*(3 + Log[4])])/(3 + Log[4])]*Log[4]*(1 - 2*E^4*(3 + Log[4]))*Log[4096])/(8*(3 + Log[4])^3*(3 - 8*E
^4*(3 + Log[4]))) + (3*E^((51 + 16*Log[4] + I*Sqrt[-9 + 24*E^4*(3 + Log[4])])/(4*(3 + Log[4])))*ExpIntegralEi[
-1/4*(3 - 4*x*(3 + Log[4]) + I*Sqrt[-9 + 24*E^4*(3 + Log[4])])/(3 + Log[4])]*Log[4]*(1 - 2*E^4*(3 + Log[4]))*L
og[4096])/(8*(3 + Log[4])^3*(3 - 8*E^4*(3 + Log[4]))) + ((I/2)*Sqrt[3]*E^((51 + 16*Log[4] - I*Sqrt[-9 + 24*E^4
*(3 + Log[4])])/(4*(3 + Log[4])))*ExpIntegralEi[-1/4*(3 - 4*x*(3 + Log[4]) - I*Sqrt[-9 + 24*E^4*(3 + Log[4])])
/(3 + Log[4])]*Log[4]*(1 - 2*E^4*(3 + Log[4]))*Log[4096])/((3 + Log[4])^2*(-3 + 8*E^4*(3 + Log[4]))^(3/2)) - (
(I/2)*Sqrt[3]*E^((51 + 16*Log[4] + I*Sqrt[-9 + 24*E^4*(3 + Log[4])])/(4*(3 + Log[4])))*ExpIntegralEi[-1/4*(3 -
 4*x*(3 + Log[4]) + I*Sqrt[-9 + 24*E^4*(3 + Log[4])])/(3 + Log[4])]*Log[4]*(1 - 2*E^4*(3 + Log[4]))*Log[4096])
/((3 + Log[4])^2*(-3 + 8*E^4*(3 + Log[4]))^(3/2)) + (3*E^(4 + x)*Log[4]*(1 - 2*E^4*(3 + Log[4]))*Log[4096])/(2
*(3 + Log[4])^2*(3 - 8*E^4*(3 + Log[4]))*(3 - 4*x*(3 + Log[4]) - I*Sqrt[-9 + 24*E^4*(3 + Log[4])])) + (3*E^(4
+ x)*Log[4]*(1 - 2*E^4*(3 + Log[4]))*Log[4096])/(2*(3 + Log[4])^2*(3 - 8*E^4*(3 + Log[4]))*(3 - 4*x*(3 + Log[4
]) + I*Sqrt[-9 + 24*E^4*(3 + Log[4])])) - (3*E^((3 - I*Sqrt[-9 + 24*E^4*(3 + Log[4])])/(4*(3 + Log[4])))*ExpIn
tegralEi[-1/4*(3 - 4*x*(3 + Log[4]) - I*Sqrt[-9 + 24*E^4*(3 + Log[4])])/(3 + Log[4])]*Log[4]*(4*Log[4]^2 + 4*E
^4*Log[4]*(3 + Log[4]) - Log[16]^2 - Log[64] - (I*(8*E^8*Log[4]*(3 + Log[4])^2 + 4*E^4*(3 + Log[4])*(8*Log[4]^
2 - Log[16]^2 + Log[4096]) - 3*(4*Log[4]^2 + Log[262144])))/Sqrt[-9 + 24*E^4*(3 + Log[4])]))/(16*(3 + Log[4])^
4) - (3*E^((3 + I*Sqrt[-9 + 24*E^4*(3 + Log[4])])/(4*(3 + Log[4])))*ExpIntegralEi[-1/4*(3 - 4*x*(3 + Log[4]) +
 I*Sqrt[-9 + 24*E^4*(3 + Log[4])])/(3 + Log[4])]*Log[4]*(4*Log[4]^2 + 4*E^4*Log[4]*(3 + Log[4]) - Log[16]^2 -
Log[64] + (I*(8*E^8*Log[4]*(3 + Log[4])^2 + 4*E^4*(3 + Log[4])*(8*Log[4]^2 - Log[16]^2 + Log[4096]) - 3*(4*Log
[4]^2 + Log[262144])))/Sqrt[-9 + 24*E^4*(3 + Log[4])]))/(16*(3 + Log[4])^4)

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2177

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
 + 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] &&  !$UseGamma ===
True

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2270

Int[((F_)^((g_.)*((d_.) + (e_.)*(x_))^(n_.))*(u_)^(m_.))/((a_.) + (b_.)*(x_) + (c_)*(x_)^2), x_Symbol] :> Int[
ExpandIntegrand[F^(g*(d + e*x)^n), u^m/(a + b*x + c*x^2), x], x] /; FreeQ[{F, a, b, c, d, e, g, n}, x] && Poly
nomialQ[u, x] && IntegerQ[m]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (\left (-6 x^3+21 x^4-12 x^5-12 x^6+e^8 \left (-6 x-3 x^2\right )+e^4 \left (12 x^2-18 x^3-12 x^4\right )\right ) \log (4)+\left (2 x^4-2 e^4 x^4-6 x^5-4 x^6\right ) \log ^2(4)\right )}{9 e^8+9 x^2-36 x^3+e^4 \left (-18 x+36 x^2\right )+\left (12 e^4 x^2-12 x^3+24 x^4\right ) \log (4)+x^4 \left (36+4 \log ^2(4)\right )} \, dx\\ &=\int \frac {e^x x \log (4) \left (-3 e^8 (2+x)-2 e^4 x \left (-6+9 x+x^2 (6+\log (4))\right )-x^2 \left (6+6 x^2 (2+\log (4))+4 x^3 (3+\log (4))-x (21+\log (16))\right )\right )}{\left (3 e^4-3 x+2 x^2 (3+\log (4))\right )^2} \, dx\\ &=\log (4) \int \frac {e^x x \left (-3 e^8 (2+x)-2 e^4 x \left (-6+9 x+x^2 (6+\log (4))\right )-x^2 \left (6+6 x^2 (2+\log (4))+4 x^3 (3+\log (4))-x (21+\log (16))\right )\right )}{\left (3 e^4-3 x+2 x^2 (3+\log (4))\right )^2} \, dx\\ &=\log (4) \int \left (-\frac {e^x x^2}{3+\log (4)}-\frac {3 e^x x (4+\log (4))}{2 (3+\log (4))^2}+\frac {e^x \left (-2 e^4 \log (4) (3+\log (4))+\log (4) \log (16)+\log (262144)\right )}{4 (3+\log (4))^3}+\frac {3 e^x \left (4 e^8 \log (4) (3+\log (4))-3 \log (16)-2 x \left (4 \log ^2(4)+4 e^4 \log (4) (3+\log (4))-\log ^2(16)-\log (64)\right )+2 e^4 \left (8 \log ^2(4)-\log ^2(16)+\log (262144)\right )\right )}{8 (3+\log (4))^3 \left (3 e^4-3 x+2 x^2 (3+\log (4))\right )}+\frac {3 e^x \left (-x \left (16 e^8 \log (4) (3+\log (4))^2+9 \log (16)-12 e^4 (3+\log (4)) \log (256)\right )+e^4 \left (3 \log (4096)-2 e^4 (3+\log (4)) \log (68719476736)\right )\right )}{8 (3+\log (4))^3 \left (3 e^4-3 x+2 x^2 (3+\log (4))\right )^2}\right ) \, dx\\ &=\frac {(3 \log (4)) \int \frac {e^x \left (4 e^8 \log (4) (3+\log (4))-3 \log (16)-2 x \left (4 \log ^2(4)+4 e^4 \log (4) (3+\log (4))-\log ^2(16)-\log (64)\right )+2 e^4 \left (8 \log ^2(4)-\log ^2(16)+\log (262144)\right )\right )}{3 e^4-3 x+2 x^2 (3+\log (4))} \, dx}{8 (3+\log (4))^3}+\frac {(3 \log (4)) \int \frac {e^x \left (-x \left (16 e^8 \log (4) (3+\log (4))^2+9 \log (16)-12 e^4 (3+\log (4)) \log (256)\right )+e^4 \left (3 \log (4096)-2 e^4 (3+\log (4)) \log (68719476736)\right )\right )}{\left (3 e^4-3 x+2 x^2 (3+\log (4))\right )^2} \, dx}{8 (3+\log (4))^3}-\frac {\log (4) \int e^x x^2 \, dx}{3+\log (4)}-\frac {(3 \log (4) (4+\log (4))) \int e^x x \, dx}{2 (3+\log (4))^2}+\frac {\left (\log ^2(4) \left (9-2 e^4 (3+\log (4))+\log (16)\right )\right ) \int e^x \, dx}{4 (3+\log (4))^3}\\ &=-\frac {e^x x^2 \log (4)}{3+\log (4)}-\frac {3 e^x x \log (4) (4+\log (4))}{2 (3+\log (4))^2}+\frac {e^x \log ^2(4) \left (9-2 e^4 (3+\log (4))+\log (16)\right )}{4 (3+\log (4))^3}+\frac {(3 \log (4)) \int \left (\frac {e^x \left (-2 \left (4 \log ^2(4)+4 e^4 \log (4) (3+\log (4))-\log ^2(16)-\log (64)\right )-\frac {2 i \left (72 e^8 \log (4)-12 \log ^2(4)+96 e^4 \log ^2(4)+48 e^8 \log ^2(4)+32 e^4 \log ^3(4)+8 e^8 \log ^3(4)-12 e^4 \log ^2(16)-4 e^4 \log (4) \log ^2(16)+12 e^4 \log (4096)+4 e^4 \log (4) \log (4096)-3 \log (262144)\right )}{\sqrt {3 \left (-3+24 e^4+8 e^4 \log (4)\right )}}\right )}{-3+4 x (3+\log (4))-i \sqrt {3 \left (-3+24 e^4+8 e^4 \log (4)\right )}}+\frac {e^x \left (-2 \left (4 \log ^2(4)+4 e^4 \log (4) (3+\log (4))-\log ^2(16)-\log (64)\right )+\frac {2 i \left (72 e^8 \log (4)-12 \log ^2(4)+96 e^4 \log ^2(4)+48 e^8 \log ^2(4)+32 e^4 \log ^3(4)+8 e^8 \log ^3(4)-12 e^4 \log ^2(16)-4 e^4 \log (4) \log ^2(16)+12 e^4 \log (4096)+4 e^4 \log (4) \log (4096)-3 \log (262144)\right )}{\sqrt {3 \left (-3+24 e^4+8 e^4 \log (4)\right )}}\right )}{-3+4 x (3+\log (4))+i \sqrt {3 \left (-3+24 e^4+8 e^4 \log (4)\right )}}\right ) \, dx}{8 (3+\log (4))^3}+\frac {(3 \log (4)) \int \left (\frac {e^x x \left (-16 e^8 \log (4) (3+\log (4))^2-9 \log (16)+12 e^4 (3+\log (4)) \log (256)\right )}{\left (3 e^4-3 x+2 x^2 (3+\log (4))\right )^2}+\frac {e^{4+x} \left (3 \log (4096)-2 e^4 (3+\log (4)) \log (68719476736)\right )}{\left (3 e^4-3 x+2 x^2 (3+\log (4))\right )^2}\right ) \, dx}{8 (3+\log (4))^3}+\frac {(2 \log (4)) \int e^x x \, dx}{3+\log (4)}+\frac {(3 \log (4) (4+\log (4))) \int e^x \, dx}{2 (3+\log (4))^2}\\ &=\frac {2 e^x x \log (4)}{3+\log (4)}-\frac {e^x x^2 \log (4)}{3+\log (4)}+\frac {3 e^x \log (4) (4+\log (4))}{2 (3+\log (4))^2}-\frac {3 e^x x \log (4) (4+\log (4))}{2 (3+\log (4))^2}+\frac {e^x \log ^2(4) \left (9-2 e^4 (3+\log (4))+\log (16)\right )}{4 (3+\log (4))^3}-\frac {(2 \log (4)) \int e^x \, dx}{3+\log (4)}-\frac {\left (3 \log (4) \left (16 e^8 \log (4) (3+\log (4))^2+9 \log (16)-12 e^4 (3+\log (4)) \log (256)\right )\right ) \int \frac {e^x x}{\left (3 e^4-3 x+2 x^2 (3+\log (4))\right )^2} \, dx}{8 (3+\log (4))^3}+\frac {\left (9 \log (4) \left (1-2 e^4 (3+\log (4))\right ) \log (4096)\right ) \int \frac {e^{4+x}}{\left (3 e^4-3 x+2 x^2 (3+\log (4))\right )^2} \, dx}{8 (3+\log (4))^3}-\frac {\left (3 \log (4) \left (4 \log ^2(4)+4 e^4 \log (4) (3+\log (4))-\log ^2(16)-\log (64)-\frac {i \left (8 e^8 \log (4) (3+\log (4))^2+4 e^4 (3+\log (4)) \left (8 \log ^2(4)-\log ^2(16)+\log (4096)\right )-3 \left (4 \log ^2(4)+\log (262144)\right )\right )}{\sqrt {-9+24 e^4 (3+\log (4))}}\right )\right ) \int \frac {e^x}{-3+4 x (3+\log (4))+i \sqrt {3 \left (-3+24 e^4+8 e^4 \log (4)\right )}} \, dx}{4 (3+\log (4))^3}-\frac {\left (3 \log (4) \left (4 \log ^2(4)+4 e^4 \log (4) (3+\log (4))-\log ^2(16)-\log (64)+\frac {i \left (8 e^8 \log (4) (3+\log (4))^2+4 e^4 (3+\log (4)) \left (8 \log ^2(4)-\log ^2(16)+\log (4096)\right )-3 \left (4 \log ^2(4)+\log (262144)\right )\right )}{\sqrt {-9+24 e^4 (3+\log (4))}}\right )\right ) \int \frac {e^x}{-3+4 x (3+\log (4))-i \sqrt {3 \left (-3+24 e^4+8 e^4 \log (4)\right )}} \, dx}{4 (3+\log (4))^3}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [F]  time = 2.49, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^x \left (\left (-6 x^3+21 x^4-12 x^5-12 x^6+e^8 \left (-6 x-3 x^2\right )+e^4 \left (12 x^2-18 x^3-12 x^4\right )\right ) \log (4)+\left (2 x^4-2 e^4 x^4-6 x^5-4 x^6\right ) \log ^2(4)\right )}{9 e^8+9 x^2-36 x^3+36 x^4+e^4 \left (-18 x+36 x^2\right )+\left (12 e^4 x^2-12 x^3+24 x^4\right ) \log (4)+4 x^4 \log ^2(4)} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[(E^x*((-6*x^3 + 21*x^4 - 12*x^5 - 12*x^6 + E^8*(-6*x - 3*x^2) + E^4*(12*x^2 - 18*x^3 - 12*x^4))*Log[
4] + (2*x^4 - 2*E^4*x^4 - 6*x^5 - 4*x^6)*Log[4]^2))/(9*E^8 + 9*x^2 - 36*x^3 + 36*x^4 + E^4*(-18*x + 36*x^2) +
(12*E^4*x^2 - 12*x^3 + 24*x^4)*Log[4] + 4*x^4*Log[4]^2),x]

[Out]

Integrate[(E^x*((-6*x^3 + 21*x^4 - 12*x^5 - 12*x^6 + E^8*(-6*x - 3*x^2) + E^4*(12*x^2 - 18*x^3 - 12*x^4))*Log[
4] + (2*x^4 - 2*E^4*x^4 - 6*x^5 - 4*x^6)*Log[4]^2))/(9*E^8 + 9*x^2 - 36*x^3 + 36*x^4 + E^4*(-18*x + 36*x^2) +
(12*E^4*x^2 - 12*x^3 + 24*x^4)*Log[4] + 4*x^4*Log[4]^2), x]

________________________________________________________________________________________

fricas [A]  time = 0.60, size = 45, normalized size = 1.36 \begin {gather*} -\frac {2 \, {\left (2 \, x^{4} - x^{3} + x^{2} e^{4}\right )} e^{x} \log \relax (2)}{4 \, x^{2} \log \relax (2) + 6 \, x^{2} - 3 \, x + 3 \, e^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*(-2*x^4*exp(4)-4*x^6-6*x^5+2*x^4)*log(2)^2+2*((-3*x^2-6*x)*exp(4)^2+(-12*x^4-18*x^3+12*x^2)*exp(4
)-12*x^6-12*x^5+21*x^4-6*x^3)*log(2))*exp(x)/(16*x^4*log(2)^2+2*(12*x^2*exp(4)+24*x^4-12*x^3)*log(2)+9*exp(4)^
2+(36*x^2-18*x)*exp(4)+36*x^4-36*x^3+9*x^2),x, algorithm="fricas")

[Out]

-2*(2*x^4 - x^3 + x^2*e^4)*e^x*log(2)/(4*x^2*log(2) + 6*x^2 - 3*x + 3*e^4)

________________________________________________________________________________________

giac [B]  time = 2.21, size = 288, normalized size = 8.73 \begin {gather*} -\frac {32 \, x^{4} e^{x} \log \relax (2)^{4} + 144 \, x^{4} e^{x} \log \relax (2)^{3} - 16 \, x^{3} e^{x} \log \relax (2)^{4} + 216 \, x^{4} e^{x} \log \relax (2)^{2} - 72 \, x^{3} e^{x} \log \relax (2)^{3} + 16 \, x^{2} e^{\left (x + 4\right )} \log \relax (2)^{4} + 108 \, x^{4} e^{x} \log \relax (2) - 108 \, x^{3} e^{x} \log \relax (2)^{2} + 72 \, x^{2} e^{\left (x + 4\right )} \log \relax (2)^{3} - 54 \, x^{3} e^{x} \log \relax (2) + 108 \, x^{2} e^{\left (x + 4\right )} \log \relax (2)^{2} + 24 \, x e^{\left (x + 4\right )} \log \relax (2)^{3} + 54 \, x^{2} e^{\left (x + 4\right )} \log \relax (2) + 36 \, x e^{\left (x + 4\right )} \log \relax (2)^{2} - 9 \, x e^{x} \log \relax (2)^{2} - 12 \, e^{\left (x + 8\right )} \log \relax (2)^{3} - 18 \, e^{\left (x + 8\right )} \log \relax (2)^{2} + 9 \, e^{\left (x + 4\right )} \log \relax (2)^{2}}{32 \, x^{2} \log \relax (2)^{4} + 192 \, x^{2} \log \relax (2)^{3} + 432 \, x^{2} \log \relax (2)^{2} - 24 \, x \log \relax (2)^{3} + 24 \, e^{4} \log \relax (2)^{3} + 432 \, x^{2} \log \relax (2) - 108 \, x \log \relax (2)^{2} + 108 \, e^{4} \log \relax (2)^{2} + 162 \, x^{2} - 162 \, x \log \relax (2) + 162 \, e^{4} \log \relax (2) - 81 \, x + 81 \, e^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*(-2*x^4*exp(4)-4*x^6-6*x^5+2*x^4)*log(2)^2+2*((-3*x^2-6*x)*exp(4)^2+(-12*x^4-18*x^3+12*x^2)*exp(4
)-12*x^6-12*x^5+21*x^4-6*x^3)*log(2))*exp(x)/(16*x^4*log(2)^2+2*(12*x^2*exp(4)+24*x^4-12*x^3)*log(2)+9*exp(4)^
2+(36*x^2-18*x)*exp(4)+36*x^4-36*x^3+9*x^2),x, algorithm="giac")

[Out]

-(32*x^4*e^x*log(2)^4 + 144*x^4*e^x*log(2)^3 - 16*x^3*e^x*log(2)^4 + 216*x^4*e^x*log(2)^2 - 72*x^3*e^x*log(2)^
3 + 16*x^2*e^(x + 4)*log(2)^4 + 108*x^4*e^x*log(2) - 108*x^3*e^x*log(2)^2 + 72*x^2*e^(x + 4)*log(2)^3 - 54*x^3
*e^x*log(2) + 108*x^2*e^(x + 4)*log(2)^2 + 24*x*e^(x + 4)*log(2)^3 + 54*x^2*e^(x + 4)*log(2) + 36*x*e^(x + 4)*
log(2)^2 - 9*x*e^x*log(2)^2 - 12*e^(x + 8)*log(2)^3 - 18*e^(x + 8)*log(2)^2 + 9*e^(x + 4)*log(2)^2)/(32*x^2*lo
g(2)^4 + 192*x^2*log(2)^3 + 432*x^2*log(2)^2 - 24*x*log(2)^3 + 24*e^4*log(2)^3 + 432*x^2*log(2) - 108*x*log(2)
^2 + 108*e^4*log(2)^2 + 162*x^2 - 162*x*log(2) + 162*e^4*log(2) - 81*x + 81*e^4)

________________________________________________________________________________________

maple [A]  time = 0.50, size = 43, normalized size = 1.30




method result size



gosper \(-\frac {2 x^{2} \left (2 x^{2}+{\mathrm e}^{4}-x \right ) \ln \relax (2) {\mathrm e}^{x}}{4 x^{2} \ln \relax (2)+6 x^{2}+3 \,{\mathrm e}^{4}-3 x}\) \(43\)
risch \(-\frac {2 x^{2} \left (2 x^{2}+{\mathrm e}^{4}-x \right ) \ln \relax (2) {\mathrm e}^{x}}{4 x^{2} \ln \relax (2)+6 x^{2}+3 \,{\mathrm e}^{4}-3 x}\) \(43\)
norman \(\frac {2 x^{3} \ln \relax (2) {\mathrm e}^{x}-4 x^{4} \ln \relax (2) {\mathrm e}^{x}-2 x^{2} {\mathrm e}^{4} \ln \relax (2) {\mathrm e}^{x}}{4 x^{2} \ln \relax (2)+6 x^{2}+3 \,{\mathrm e}^{4}-3 x}\) \(54\)
default \(\text {Expression too large to display}\) \(45072\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((4*(-2*x^4*exp(4)-4*x^6-6*x^5+2*x^4)*ln(2)^2+2*((-3*x^2-6*x)*exp(4)^2+(-12*x^4-18*x^3+12*x^2)*exp(4)-12*x^
6-12*x^5+21*x^4-6*x^3)*ln(2))*exp(x)/(16*x^4*ln(2)^2+2*(12*x^2*exp(4)+24*x^4-12*x^3)*ln(2)+9*exp(4)^2+(36*x^2-
18*x)*exp(4)+36*x^4-36*x^3+9*x^2),x,method=_RETURNVERBOSE)

[Out]

-2*x^2*(2*x^2+exp(4)-x)*ln(2)*exp(x)/(4*x^2*ln(2)+6*x^2+3*exp(4)-3*x)

________________________________________________________________________________________

maxima [A]  time = 0.58, size = 48, normalized size = 1.45 \begin {gather*} -\frac {2 \, {\left (2 \, x^{4} \log \relax (2) - x^{3} \log \relax (2) + x^{2} e^{4} \log \relax (2)\right )} e^{x}}{2 \, x^{2} {\left (2 \, \log \relax (2) + 3\right )} - 3 \, x + 3 \, e^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*(-2*x^4*exp(4)-4*x^6-6*x^5+2*x^4)*log(2)^2+2*((-3*x^2-6*x)*exp(4)^2+(-12*x^4-18*x^3+12*x^2)*exp(4
)-12*x^6-12*x^5+21*x^4-6*x^3)*log(2))*exp(x)/(16*x^4*log(2)^2+2*(12*x^2*exp(4)+24*x^4-12*x^3)*log(2)+9*exp(4)^
2+(36*x^2-18*x)*exp(4)+36*x^4-36*x^3+9*x^2),x, algorithm="maxima")

[Out]

-2*(2*x^4*log(2) - x^3*log(2) + x^2*e^4*log(2))*e^x/(2*x^2*(2*log(2) + 3) - 3*x + 3*e^4)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^x\,\left (2\,\ln \relax (2)\,\left ({\mathrm {e}}^8\,\left (3\,x^2+6\,x\right )+{\mathrm {e}}^4\,\left (12\,x^4+18\,x^3-12\,x^2\right )+6\,x^3-21\,x^4+12\,x^5+12\,x^6\right )+4\,{\ln \relax (2)}^2\,\left (2\,x^4\,{\mathrm {e}}^4-2\,x^4+6\,x^5+4\,x^6\right )\right )}{9\,{\mathrm {e}}^8+16\,x^4\,{\ln \relax (2)}^2-{\mathrm {e}}^4\,\left (18\,x-36\,x^2\right )+2\,\ln \relax (2)\,\left (24\,x^4-12\,x^3+12\,{\mathrm {e}}^4\,x^2\right )+9\,x^2-36\,x^3+36\,x^4} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(x)*(2*log(2)*(exp(8)*(6*x + 3*x^2) + exp(4)*(18*x^3 - 12*x^2 + 12*x^4) + 6*x^3 - 21*x^4 + 12*x^5 + 1
2*x^6) + 4*log(2)^2*(2*x^4*exp(4) - 2*x^4 + 6*x^5 + 4*x^6)))/(9*exp(8) + 16*x^4*log(2)^2 - exp(4)*(18*x - 36*x
^2) + 2*log(2)*(12*x^2*exp(4) - 12*x^3 + 24*x^4) + 9*x^2 - 36*x^3 + 36*x^4),x)

[Out]

int(-(exp(x)*(2*log(2)*(exp(8)*(6*x + 3*x^2) + exp(4)*(18*x^3 - 12*x^2 + 12*x^4) + 6*x^3 - 21*x^4 + 12*x^5 + 1
2*x^6) + 4*log(2)^2*(2*x^4*exp(4) - 2*x^4 + 6*x^5 + 4*x^6)))/(9*exp(8) + 16*x^4*log(2)^2 - exp(4)*(18*x - 36*x
^2) + 2*log(2)*(12*x^2*exp(4) - 12*x^3 + 24*x^4) + 9*x^2 - 36*x^3 + 36*x^4), x)

________________________________________________________________________________________

sympy [B]  time = 0.39, size = 53, normalized size = 1.61 \begin {gather*} \frac {\left (- 4 x^{4} \log {\relax (2 )} + 2 x^{3} \log {\relax (2 )} - 2 x^{2} e^{4} \log {\relax (2 )}\right ) e^{x}}{4 x^{2} \log {\relax (2 )} + 6 x^{2} - 3 x + 3 e^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*(-2*x**4*exp(4)-4*x**6-6*x**5+2*x**4)*ln(2)**2+2*((-3*x**2-6*x)*exp(4)**2+(-12*x**4-18*x**3+12*x*
*2)*exp(4)-12*x**6-12*x**5+21*x**4-6*x**3)*ln(2))*exp(x)/(16*x**4*ln(2)**2+2*(12*x**2*exp(4)+24*x**4-12*x**3)*
ln(2)+9*exp(4)**2+(36*x**2-18*x)*exp(4)+36*x**4-36*x**3+9*x**2),x)

[Out]

(-4*x**4*log(2) + 2*x**3*log(2) - 2*x**2*exp(4)*log(2))*exp(x)/(4*x**2*log(2) + 6*x**2 - 3*x + 3*exp(4))

________________________________________________________________________________________