Optimal. Leaf size=31 \[ \left (2-\log \left (-x-x^2+\frac {x}{\log \left (\frac {5 \log (3)}{e^2 x}\right )}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.52, antiderivative size = 26, normalized size of antiderivative = 0.84, number of steps used = 3, number of rules used = 3, integrand size = 144, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.021, Rules used = {6688, 12, 6686} \begin {gather*} \left (2-\log \left (-x \left (x+\frac {1}{2-\log \left (\frac {\log (243)}{x}\right )}+1\right )\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (1+\left (-2+\log \left (\frac {1}{x}\right )+\log (\log (243))\right )^2+2 x \left (-2+\log \left (\frac {1}{x}\right )+\log (\log (243))\right )^2-\log \left (\frac {\log (243)}{x}\right )\right ) \left (-2+\log \left (x \left (-1-x+\frac {1}{-2+\log \left (\frac {\log (243)}{x}\right )}\right )\right )\right )}{x \left (1-(1+x) \left (-2+\log \left (\frac {1}{x}\right )+\log (\log (243))\right )\right ) \left (2-\log \left (\frac {\log (243)}{x}\right )\right )} \, dx\\ &=2 \int \frac {\left (1+\left (-2+\log \left (\frac {1}{x}\right )+\log (\log (243))\right )^2+2 x \left (-2+\log \left (\frac {1}{x}\right )+\log (\log (243))\right )^2-\log \left (\frac {\log (243)}{x}\right )\right ) \left (-2+\log \left (x \left (-1-x+\frac {1}{-2+\log \left (\frac {\log (243)}{x}\right )}\right )\right )\right )}{x \left (1-(1+x) \left (-2+\log \left (\frac {1}{x}\right )+\log (\log (243))\right )\right ) \left (2-\log \left (\frac {\log (243)}{x}\right )\right )} \, dx\\ &=\left (2-\log \left (-x \left (1+x+\frac {1}{2-\log \left (\frac {\log (243)}{x}\right )}\right )\right )\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.49, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4+4 \log \left (\frac {5 \log (3)}{e^2 x}\right )+(-4-8 x) \log ^2\left (\frac {5 \log (3)}{e^2 x}\right )+\left (-2-2 \log \left (\frac {5 \log (3)}{e^2 x}\right )+(2+4 x) \log ^2\left (\frac {5 \log (3)}{e^2 x}\right )\right ) \log \left (\frac {x+\left (-x-x^2\right ) \log \left (\frac {5 \log (3)}{e^2 x}\right )}{\log \left (\frac {5 \log (3)}{e^2 x}\right )}\right )}{-x \log \left (\frac {5 \log (3)}{e^2 x}\right )+\left (x+x^2\right ) \log ^2\left (\frac {5 \log (3)}{e^2 x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.88, size = 75, normalized size = 2.42 \begin {gather*} \log \left (-\frac {{\left (x^{2} + x\right )} \log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right ) - x}{\log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right )}\right )^{2} - 4 \, \log \left (-\frac {{\left (x^{2} + x\right )} \log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right ) - x}{\log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left (2 \, {\left (2 \, x + 1\right )} \log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right )^{2} - {\left ({\left (2 \, x + 1\right )} \log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right )^{2} - \log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right ) - 1\right )} \log \left (-\frac {{\left (x^{2} + x\right )} \log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right ) - x}{\log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right )}\right ) - 2 \, \log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right ) - 2\right )}}{{\left (x^{2} + x\right )} \log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right )^{2} - x \log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.13, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (4 x +2\right ) \ln \left (\frac {5 \ln \relax (3) {\mathrm e}^{-2}}{x}\right )^{2}-2 \ln \left (\frac {5 \ln \relax (3) {\mathrm e}^{-2}}{x}\right )-2\right ) \ln \left (\frac {\left (-x^{2}-x \right ) \ln \left (\frac {5 \ln \relax (3) {\mathrm e}^{-2}}{x}\right )+x}{\ln \left (\frac {5 \ln \relax (3) {\mathrm e}^{-2}}{x}\right )}\right )+\left (-8 x -4\right ) \ln \left (\frac {5 \ln \relax (3) {\mathrm e}^{-2}}{x}\right )^{2}+4 \ln \left (\frac {5 \ln \relax (3) {\mathrm e}^{-2}}{x}\right )+4}{\left (x^{2}+x \right ) \ln \left (\frac {5 \ln \relax (3) {\mathrm e}^{-2}}{x}\right )^{2}-x \ln \left (\frac {5 \ln \relax (3) {\mathrm e}^{-2}}{x}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -2 \, \int \frac {2 \, {\left (2 \, x + 1\right )} \log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right )^{2} - {\left ({\left (2 \, x + 1\right )} \log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right )^{2} - \log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right ) - 1\right )} \log \left (-\frac {{\left (x^{2} + x\right )} \log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right ) - x}{\log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right )}\right ) - 2 \, \log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right ) - 2}{{\left (x^{2} + x\right )} \log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right )^{2} - x \log \left (\frac {5 \, e^{\left (-2\right )} \log \relax (3)}{x}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.48, size = 223, normalized size = 7.19 \begin {gather*} {\ln \left (\frac {x-\ln \left (\frac {5\,{\mathrm {e}}^{-2}\,\ln \relax (3)}{x}\right )\,\left (x^2+x\right )}{\ln \left (\frac {5\,{\mathrm {e}}^{-2}\,\ln \relax (3)}{x}\right )}\right )}^2+4\,\ln \left (x+1\right )-4\,\ln \left (\frac {4\,\left (x-x\,\ln \left (\frac {5\,{\mathrm {e}}^{-2}\,\ln \relax (3)}{x}\right )+1\right )}{x\,{\left (x+1\right )}^2}-\frac {4\,\left (2\,\ln \left (\frac {5\,{\mathrm {e}}^{-2}\,\ln \relax (3)}{x}\right )-x+3\,x\,\ln \left (\frac {5\,{\mathrm {e}}^{-2}\,\ln \relax (3)}{x}\right )+2\,x^2\,\ln \left (\frac {5\,{\mathrm {e}}^{-2}\,\ln \relax (3)}{x}\right )-1\right )}{x\,{\left (x+1\right )}^2}\right )+4\,\ln \left (\frac {4\,\left (2\,\ln \left (\frac {5\,{\mathrm {e}}^{-2}\,\ln \relax (3)}{x}\right )-x+3\,x\,\ln \left (\frac {5\,{\mathrm {e}}^{-2}\,\ln \relax (3)}{x}\right )+2\,x^2\,\ln \left (\frac {5\,{\mathrm {e}}^{-2}\,\ln \relax (3)}{x}\right )-1\right )}{x\,{\left (x+1\right )}^2}+\frac {4\,\left (x-x\,\ln \left (\frac {5\,{\mathrm {e}}^{-2}\,\ln \relax (3)}{x}\right )+1\right )}{x\,{\left (x+1\right )}^2}\right )-4\,\ln \left (x\,\left (x^2+x+1\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________