Optimal. Leaf size=19 \[ \frac {31}{2}+x-\frac {x}{e^x+x}-\log (x) \]
________________________________________________________________________________________
Rubi [F] time = 0.82, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 x} (-1+x)-x^2+x^3+e^x \left (-3 x+3 x^2\right )}{e^{2 x} x+2 e^x x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(1-x) \left (-e^{2 x}-3 e^x x-x^2\right )}{x \left (e^x+x\right )^2} \, dx\\ &=\int \left (\frac {-1+x}{x}-\frac {(-1+x) x}{\left (e^x+x\right )^2}+\frac {-1+x}{e^x+x}\right ) \, dx\\ &=\int \frac {-1+x}{x} \, dx-\int \frac {(-1+x) x}{\left (e^x+x\right )^2} \, dx+\int \frac {-1+x}{e^x+x} \, dx\\ &=\int \left (1-\frac {1}{x}\right ) \, dx-\int \left (-\frac {x}{\left (e^x+x\right )^2}+\frac {x^2}{\left (e^x+x\right )^2}\right ) \, dx+\int \left (-\frac {1}{e^x+x}+\frac {x}{e^x+x}\right ) \, dx\\ &=x-\log (x)+\int \frac {x}{\left (e^x+x\right )^2} \, dx-\int \frac {x^2}{\left (e^x+x\right )^2} \, dx-\int \frac {1}{e^x+x} \, dx+\int \frac {x}{e^x+x} \, dx\\ &=x+\frac {1}{e^x+x}-\log (x)+\int \frac {1}{\left (e^x+x\right )^2} \, dx-\int \frac {x^2}{\left (e^x+x\right )^2} \, dx+\int \frac {x}{e^x+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 16, normalized size = 0.84 \begin {gather*} x-\frac {x}{e^x+x}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 26, normalized size = 1.37 \begin {gather*} \frac {x^{2} + x e^{x} - {\left (x + e^{x}\right )} \log \relax (x) - x}{x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.47, size = 69, normalized size = 3.63 \begin {gather*} \frac {x^{2} + x e^{x} + x \log \left (x + e^{x}\right ) + e^{x} \log \left (x + e^{x}\right ) - x \log \relax (x) - e^{x} \log \relax (x) - x \log \left (-x - e^{x}\right ) - e^{x} \log \left (-x - e^{x}\right ) - x}{x + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 16, normalized size = 0.84
method | result | size |
risch | \(x -\ln \relax (x )-\frac {x}{{\mathrm e}^{x}+x}\) | \(16\) |
norman | \(\frac {x^{2}+{\mathrm e}^{x}+{\mathrm e}^{x} x}{{\mathrm e}^{x}+x}-\ln \relax (x )\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 23, normalized size = 1.21 \begin {gather*} \frac {x^{2} + x e^{x} - x}{x + e^{x}} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 23, normalized size = 1.21 \begin {gather*} \frac {x\,{\mathrm {e}}^x-x+x^2}{x+{\mathrm {e}}^x}-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 10, normalized size = 0.53 \begin {gather*} x - \frac {x}{x + e^{x}} - \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________