Optimal. Leaf size=30 \[ \log \left (x+\frac {1}{3} \left (3-\frac {-5+x}{-3-e^x+\frac {5}{x}+\log (x)}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 23.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {100-105 x+31 x^2+3 e^{2 x} x^2+e^x \left (-30 x+24 x^2-x^3\right )+\left (30 x-19 x^2-6 e^x x^2\right ) \log (x)+3 x^2 \log ^2(x)}{75+10 x-83 x^2+30 x^3+e^{2 x} \left (3 x^2+3 x^3\right )+e^x \left (-30 x-17 x^2+19 x^3\right )+\left (30 x+17 x^2-19 x^3+e^x \left (-6 x^2-6 x^3\right )\right ) \log (x)+\left (3 x^2+3 x^3\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{1+x}-\frac {5+4 x-3 x^2+x^2 \log (x)}{x \left (-5+3 x+e^x x-x \log (x)\right )}+\frac {15+42 x+41 x^2-2 x^3-10 x^4+3 x^2 \log (x)+6 x^3 \log (x)+3 x^4 \log (x)}{x (1+x) \left (-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)\right )}\right ) \, dx\\ &=\log (1+x)-\int \frac {5+4 x-3 x^2+x^2 \log (x)}{x \left (-5+3 x+e^x x-x \log (x)\right )} \, dx+\int \frac {15+42 x+41 x^2-2 x^3-10 x^4+3 x^2 \log (x)+6 x^3 \log (x)+3 x^4 \log (x)}{x (1+x) \left (-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)\right )} \, dx\\ &=\log (1+x)-\int \left (\frac {4}{-5+3 x+e^x x-x \log (x)}+\frac {5}{x \left (-5+3 x+e^x x-x \log (x)\right )}-\frac {3 x}{-5+3 x+e^x x-x \log (x)}-\frac {x \log (x)}{5-3 x-e^x x+x \log (x)}\right ) \, dx+\int \left (\frac {15+42 x+41 x^2-2 x^3-10 x^4+3 x^2 \log (x)+6 x^3 \log (x)+3 x^4 \log (x)}{x \left (-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)\right )}-\frac {15+42 x+41 x^2-2 x^3-10 x^4+3 x^2 \log (x)+6 x^3 \log (x)+3 x^4 \log (x)}{(1+x) \left (-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)\right )}\right ) \, dx\\ &=\log (1+x)+3 \int \frac {x}{-5+3 x+e^x x-x \log (x)} \, dx-4 \int \frac {1}{-5+3 x+e^x x-x \log (x)} \, dx-5 \int \frac {1}{x \left (-5+3 x+e^x x-x \log (x)\right )} \, dx+\int \frac {x \log (x)}{5-3 x-e^x x+x \log (x)} \, dx+\int \frac {15+42 x+41 x^2-2 x^3-10 x^4+3 x^2 \log (x)+6 x^3 \log (x)+3 x^4 \log (x)}{x \left (-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)\right )} \, dx-\int \frac {15+42 x+41 x^2-2 x^3-10 x^4+3 x^2 \log (x)+6 x^3 \log (x)+3 x^4 \log (x)}{(1+x) \left (-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)\right )} \, dx\\ &=\log (1+x)+3 \int \frac {x}{-5+3 x+e^x x-x \log (x)} \, dx-4 \int \frac {1}{-5+3 x+e^x x-x \log (x)} \, dx-5 \int \frac {1}{x \left (-5+3 x+e^x x-x \log (x)\right )} \, dx+\int \frac {x \log (x)}{5-3 x-e^x x+x \log (x)} \, dx+\int \left (\frac {42}{-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)}+\frac {15}{x \left (-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)\right )}+\frac {41 x}{-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)}-\frac {2 x^2}{-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)}-\frac {10 x^3}{-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)}-\frac {3 x \log (x)}{15+11 x-3 e^x x-10 x^2-3 e^x x^2+3 x \log (x)+3 x^2 \log (x)}-\frac {6 x^2 \log (x)}{15+11 x-3 e^x x-10 x^2-3 e^x x^2+3 x \log (x)+3 x^2 \log (x)}-\frac {3 x^3 \log (x)}{15+11 x-3 e^x x-10 x^2-3 e^x x^2+3 x \log (x)+3 x^2 \log (x)}\right ) \, dx-\int \left (\frac {15}{(1+x) \left (-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)\right )}+\frac {42 x}{(1+x) \left (-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)\right )}+\frac {41 x^2}{(1+x) \left (-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)\right )}-\frac {2 x^3}{(1+x) \left (-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)\right )}-\frac {10 x^4}{(1+x) \left (-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)\right )}-\frac {3 x^2 \log (x)}{(1+x) \left (15+11 x-3 e^x x-10 x^2-3 e^x x^2+3 x \log (x)+3 x^2 \log (x)\right )}-\frac {6 x^3 \log (x)}{(1+x) \left (15+11 x-3 e^x x-10 x^2-3 e^x x^2+3 x \log (x)+3 x^2 \log (x)\right )}-\frac {3 x^4 \log (x)}{(1+x) \left (15+11 x-3 e^x x-10 x^2-3 e^x x^2+3 x \log (x)+3 x^2 \log (x)\right )}\right ) \, dx\\ &=\log (1+x)-2 \int \frac {x^2}{-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)} \, dx+2 \int \frac {x^3}{(1+x) \left (-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)\right )} \, dx+3 \int \frac {x}{-5+3 x+e^x x-x \log (x)} \, dx-3 \int \frac {x \log (x)}{15+11 x-3 e^x x-10 x^2-3 e^x x^2+3 x \log (x)+3 x^2 \log (x)} \, dx-3 \int \frac {x^3 \log (x)}{15+11 x-3 e^x x-10 x^2-3 e^x x^2+3 x \log (x)+3 x^2 \log (x)} \, dx+3 \int \frac {x^2 \log (x)}{(1+x) \left (15+11 x-3 e^x x-10 x^2-3 e^x x^2+3 x \log (x)+3 x^2 \log (x)\right )} \, dx+3 \int \frac {x^4 \log (x)}{(1+x) \left (15+11 x-3 e^x x-10 x^2-3 e^x x^2+3 x \log (x)+3 x^2 \log (x)\right )} \, dx-4 \int \frac {1}{-5+3 x+e^x x-x \log (x)} \, dx-5 \int \frac {1}{x \left (-5+3 x+e^x x-x \log (x)\right )} \, dx-6 \int \frac {x^2 \log (x)}{15+11 x-3 e^x x-10 x^2-3 e^x x^2+3 x \log (x)+3 x^2 \log (x)} \, dx+6 \int \frac {x^3 \log (x)}{(1+x) \left (15+11 x-3 e^x x-10 x^2-3 e^x x^2+3 x \log (x)+3 x^2 \log (x)\right )} \, dx-10 \int \frac {x^3}{-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)} \, dx+10 \int \frac {x^4}{(1+x) \left (-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)\right )} \, dx+15 \int \frac {1}{x \left (-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)\right )} \, dx-15 \int \frac {1}{(1+x) \left (-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)\right )} \, dx+41 \int \frac {x}{-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)} \, dx-41 \int \frac {x^2}{(1+x) \left (-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)\right )} \, dx+42 \int \frac {1}{-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)} \, dx-42 \int \frac {x}{(1+x) \left (-15-11 x+3 e^x x+10 x^2+3 e^x x^2-3 x \log (x)-3 x^2 \log (x)\right )} \, dx+\int \frac {x \log (x)}{5-3 x-e^x x+x \log (x)} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.35, size = 70, normalized size = 2.33 \begin {gather*} \log (x)+\log (1+x)-\log (x (1+x))-\log \left (5-3 x-e^x x+x \log (x)\right )+\log \left (15+11 x-3 e^x x-10 x^2-3 e^x x^2+3 x \log (x)+3 x^2 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.87, size = 65, normalized size = 2.17 \begin {gather*} \log \left (x + 1\right ) + \log \left (-\frac {10 \, x^{2} + 3 \, {\left (x^{2} + x\right )} e^{x} - 3 \, {\left (x^{2} + x\right )} \log \relax (x) - 11 \, x - 15}{x^{2} + x}\right ) - \log \left (-\frac {x e^{x} - x \log \relax (x) + 3 \, x - 5}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.98, size = 53, normalized size = 1.77 \begin {gather*} \log \left (-3 \, x^{2} e^{x} + 3 \, x^{2} \log \relax (x) - 10 \, x^{2} - 3 \, x e^{x} + 3 \, x \log \relax (x) + 11 \, x + 15\right ) - \log \left (-x e^{x} + x \log \relax (x) - 3 \, x + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 62, normalized size = 2.07
method | result | size |
risch | \(\ln \left (x +1\right )+\ln \left (\ln \relax (x )-\frac {3 \,{\mathrm e}^{x} x^{2}+10 x^{2}+3 \,{\mathrm e}^{x} x -11 x -15}{3 \left (x +1\right ) x}\right )-\ln \left (\ln \relax (x )-\frac {{\mathrm e}^{x} x +3 x -5}{x}\right )\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 64, normalized size = 2.13 \begin {gather*} \log \left (x + 1\right ) + \log \left (\frac {10 \, x^{2} + 3 \, {\left (x^{2} + x\right )} e^{x} - 3 \, {\left (x^{2} + x\right )} \log \relax (x) - 11 \, x - 15}{3 \, {\left (x^{2} + x\right )}}\right ) - \log \left (\frac {x e^{x} - x \log \relax (x) + 3 \, x - 5}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {3\,x^2\,{\mathrm {e}}^{2\,x}-105\,x+3\,x^2\,{\ln \relax (x)}^2-{\mathrm {e}}^x\,\left (x^3-24\,x^2+30\,x\right )-\ln \relax (x)\,\left (6\,x^2\,{\mathrm {e}}^x-30\,x+19\,x^2\right )+31\,x^2+100}{10\,x+{\mathrm {e}}^{2\,x}\,\left (3\,x^3+3\,x^2\right )+{\ln \relax (x)}^2\,\left (3\,x^3+3\,x^2\right )-83\,x^2+30\,x^3-{\mathrm {e}}^x\,\left (-19\,x^3+17\,x^2+30\,x\right )+\ln \relax (x)\,\left (30\,x-{\mathrm {e}}^x\,\left (6\,x^3+6\,x^2\right )+17\,x^2-19\,x^3\right )+75} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: PolynomialError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________