3.11.95 \(\int 60 e^{-84+60 x} \, dx\)

Optimal. Leaf size=13 \[ e^{4 (-1+5 (-4+3 x))} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 7, normalized size of antiderivative = 0.54, number of steps used = 2, number of rules used = 2, integrand size = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {12, 2194} \begin {gather*} e^{60 x-84} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[60*E^(-84 + 60*x),x]

[Out]

E^(-84 + 60*x)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=60 \int e^{-84+60 x} \, dx\\ &=e^{-84+60 x}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 7, normalized size = 0.54 \begin {gather*} e^{-84+60 x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[60*E^(-84 + 60*x),x]

[Out]

E^(-84 + 60*x)

________________________________________________________________________________________

fricas [A]  time = 0.66, size = 6, normalized size = 0.46 \begin {gather*} e^{\left (60 \, x - 84\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(60*exp(60*x-84),x, algorithm="fricas")

[Out]

e^(60*x - 84)

________________________________________________________________________________________

giac [A]  time = 0.39, size = 6, normalized size = 0.46 \begin {gather*} e^{\left (60 \, x - 84\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(60*exp(60*x-84),x, algorithm="giac")

[Out]

e^(60*x - 84)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 7, normalized size = 0.54




method result size



gosper \({\mathrm e}^{60 x -84}\) \(7\)
derivativedivides \({\mathrm e}^{60 x -84}\) \(7\)
default \({\mathrm e}^{60 x -84}\) \(7\)
norman \({\mathrm e}^{60 x -84}\) \(7\)
risch \({\mathrm e}^{60 x -84}\) \(7\)
meijerg \(-{\mathrm e}^{-84} \left (1-{\mathrm e}^{60 x}\right )\) \(13\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(60*exp(60*x-84),x,method=_RETURNVERBOSE)

[Out]

exp(60*x-84)

________________________________________________________________________________________

maxima [A]  time = 0.37, size = 6, normalized size = 0.46 \begin {gather*} e^{\left (60 \, x - 84\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(60*exp(60*x-84),x, algorithm="maxima")

[Out]

e^(60*x - 84)

________________________________________________________________________________________

mupad [B]  time = 0.70, size = 7, normalized size = 0.54 \begin {gather*} {\mathrm {e}}^{60\,x}\,{\mathrm {e}}^{-84} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(60*exp(60*x - 84),x)

[Out]

exp(60*x)*exp(-84)

________________________________________________________________________________________

sympy [A]  time = 0.07, size = 5, normalized size = 0.38 \begin {gather*} e^{60 x - 84} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(60*exp(60*x-84),x)

[Out]

exp(60*x - 84)

________________________________________________________________________________________