Optimal. Leaf size=30 \[ \frac {(x+5 x \log (3)) \log \left (x+\frac {x}{2+x-\log (x)}+\log (x)\right )}{2 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.62, antiderivative size = 43, normalized size of antiderivative = 1.43, number of steps used = 6, number of rules used = 4, integrand size = 130, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.031, Rules used = {6688, 12, 6742, 6684} \begin {gather*} \frac {1}{2} (1+\log (243)) \log \left (x^2+3 x-\log ^2(x)+2 \log (x)\right )-\frac {1}{2} (1+\log (243)) \log (x-\log (x)+2) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(1+\log (243)) \left (4+11 x+5 x^2+x^3-\left (4+7 x+2 x^2\right ) \log (x)+(1+x) \log ^2(x)\right )}{2 x \left (x \left (6+5 x+x^2\right )-\left (-4+x+x^2\right ) \log (x)-(4+x) \log ^2(x)+\log ^3(x)\right )} \, dx\\ &=\frac {1}{2} (1+\log (243)) \int \frac {4+11 x+5 x^2+x^3-\left (4+7 x+2 x^2\right ) \log (x)+(1+x) \log ^2(x)}{x \left (x \left (6+5 x+x^2\right )-\left (-4+x+x^2\right ) \log (x)-(4+x) \log ^2(x)+\log ^3(x)\right )} \, dx\\ &=\frac {1}{2} (1+\log (243)) \int \left (\frac {1-x}{x (2+x-\log (x))}+\frac {2+3 x+2 x^2-2 \log (x)}{x \left (3 x+x^2+2 \log (x)-\log ^2(x)\right )}\right ) \, dx\\ &=\frac {1}{2} (1+\log (243)) \int \frac {1-x}{x (2+x-\log (x))} \, dx+\frac {1}{2} (1+\log (243)) \int \frac {2+3 x+2 x^2-2 \log (x)}{x \left (3 x+x^2+2 \log (x)-\log ^2(x)\right )} \, dx\\ &=-\frac {1}{2} (1+\log (243)) \log (2+x-\log (x))+\frac {1}{2} (1+\log (243)) \log \left (3 x+x^2+2 \log (x)-\log ^2(x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.35, size = 37, normalized size = 1.23 \begin {gather*} \frac {1}{2} (1+\log (243)) \left (-\log (2+x-\log (x))+\log \left (3 x+x^2+2 \log (x)-\log ^2(x)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 43, normalized size = 1.43 \begin {gather*} \frac {1}{2} \, {\left (5 \, \log \relax (3) + 1\right )} \log \left (-x^{2} + \log \relax (x)^{2} - 3 \, x - 2 \, \log \relax (x)\right ) - \frac {1}{2} \, {\left (5 \, \log \relax (3) + 1\right )} \log \left (-x + \log \relax (x) - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.71, size = 43, normalized size = 1.43 \begin {gather*} \frac {1}{2} \, {\left (5 \, \log \relax (3) + 1\right )} \log \left (x^{2} - \log \relax (x)^{2} + 3 \, x + 2 \, \log \relax (x)\right ) - \frac {1}{2} \, {\left (5 \, \log \relax (3) + 1\right )} \log \left (x - \log \relax (x) + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.27, size = 42, normalized size = 1.40
method | result | size |
norman | \(\left (-\frac {5 \ln \relax (3)}{2}-\frac {1}{2}\right ) \ln \left (2-\ln \relax (x )+x \right )+\left (\frac {5 \ln \relax (3)}{2}+\frac {1}{2}\right ) \ln \left (x^{2}-\ln \relax (x )^{2}+3 x +2 \ln \relax (x )\right )\) | \(42\) |
default | \(-\frac {\ln \left (2-\ln \relax (x )+x \right )}{2}+\frac {\ln \left (x^{2}-\ln \relax (x )^{2}+3 x +2 \ln \relax (x )\right )}{2}-\frac {5 \ln \relax (3) \ln \left (2-\ln \relax (x )+x \right )}{2}+\frac {5 \ln \relax (3) \ln \left (x^{2}-\ln \relax (x )^{2}+3 x +2 \ln \relax (x )\right )}{2}\) | \(66\) |
risch | \(-\frac {\ln \left (\ln \relax (x )-x -2\right )}{2}-\frac {5 \ln \left (\ln \relax (x )-x -2\right ) \ln \relax (3)}{2}+\frac {5 \ln \left (-x^{2}+\ln \relax (x )^{2}-3 x -2 \ln \relax (x )\right ) \ln \relax (3)}{2}+\frac {\ln \left (-x^{2}+\ln \relax (x )^{2}-3 x -2 \ln \relax (x )\right )}{2}\) | \(66\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 43, normalized size = 1.43 \begin {gather*} \frac {1}{2} \, {\left (5 \, \log \relax (3) + 1\right )} \log \left (-x^{2} + \log \relax (x)^{2} - 3 \, x - 2 \, \log \relax (x)\right ) - \frac {1}{2} \, {\left (5 \, \log \relax (3) + 1\right )} \log \left (-x + \log \relax (x) - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.04, size = 36, normalized size = 1.20 \begin {gather*} \left (\frac {\ln \left (243\right )}{2}+\frac {1}{2}\right )\,\left (\ln \left (x^2+3\,x-{\ln \relax (x)}^2+2\,\ln \relax (x)\right )-\ln \left (x-\ln \relax (x)+2\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.64, size = 42, normalized size = 1.40 \begin {gather*} - \frac {\left (1 + 5 \log {\relax (3 )}\right ) \log {\left (- x + \log {\relax (x )} - 2 \right )}}{2} + \frac {\left (1 + 5 \log {\relax (3 )}\right ) \log {\left (- x^{2} - 3 x + \log {\relax (x )}^{2} - 2 \log {\relax (x )} \right )}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________