Optimal. Leaf size=24 \[ e^x-\frac {3 e^x \left (2+x-\frac {\log (x)}{5 x}\right )}{x^3} \]
________________________________________________________________________________________
Rubi [A] time = 0.73, antiderivative size = 32, normalized size of antiderivative = 1.33, number of steps used = 54, number of rules used = 9, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.237, Rules used = {12, 14, 2194, 2177, 2178, 2554, 2199, 6483, 6475} \begin {gather*} \frac {3 e^x \log (x)}{5 x^4}-\frac {6 e^x}{x^3}-\frac {3 e^x}{x^2}+e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 2554
Rule 6475
Rule 6483
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^x \left (3+90 x-15 x^3+5 x^5\right )+e^x (-12+3 x) \log (x)}{x^5} \, dx\\ &=\frac {1}{5} \int \left (5 e^x+\frac {3 e^x}{x^5}+\frac {90 e^x}{x^4}-\frac {15 e^x}{x^2}-\frac {12 e^x \log (x)}{x^5}+\frac {3 e^x \log (x)}{x^4}\right ) \, dx\\ &=\frac {3}{5} \int \frac {e^x}{x^5} \, dx+\frac {3}{5} \int \frac {e^x \log (x)}{x^4} \, dx-\frac {12}{5} \int \frac {e^x \log (x)}{x^5} \, dx-3 \int \frac {e^x}{x^2} \, dx+18 \int \frac {e^x}{x^4} \, dx+\int e^x \, dx\\ &=e^x-\frac {3 e^x}{20 x^4}-\frac {6 e^x}{x^3}+\frac {3 e^x}{x}+\frac {3 e^x \log (x)}{5 x^4}+\frac {3}{20} \int \frac {e^x}{x^4} \, dx-\frac {3}{5} \int \frac {-e^x \left (2+x+x^2\right )+x^3 \text {Ei}(x)}{6 x^4} \, dx+\frac {12}{5} \int \frac {-e^x \left (6+2 x+x^2+x^3\right )+x^4 \text {Ei}(x)}{24 x^5} \, dx-3 \int \frac {e^x}{x} \, dx+6 \int \frac {e^x}{x^3} \, dx\\ &=e^x-\frac {3 e^x}{20 x^4}-\frac {121 e^x}{20 x^3}-\frac {3 e^x}{x^2}+\frac {3 e^x}{x}-3 \text {Ei}(x)+\frac {3 e^x \log (x)}{5 x^4}+\frac {1}{20} \int \frac {e^x}{x^3} \, dx-\frac {1}{10} \int \frac {-e^x \left (2+x+x^2\right )+x^3 \text {Ei}(x)}{x^4} \, dx+\frac {1}{10} \int \frac {-e^x \left (6+2 x+x^2+x^3\right )+x^4 \text {Ei}(x)}{x^5} \, dx+3 \int \frac {e^x}{x^2} \, dx\\ &=e^x-\frac {3 e^x}{20 x^4}-\frac {121 e^x}{20 x^3}-\frac {121 e^x}{40 x^2}-3 \text {Ei}(x)+\frac {3 e^x \log (x)}{5 x^4}+\frac {1}{40} \int \frac {e^x}{x^2} \, dx-\frac {1}{10} \int \left (-\frac {e^x \left (2+x+x^2\right )}{x^4}+\frac {\text {Ei}(x)}{x}\right ) \, dx+\frac {1}{10} \int \left (-\frac {e^x \left (6+2 x+x^2+x^3\right )}{x^5}+\frac {\text {Ei}(x)}{x}\right ) \, dx+3 \int \frac {e^x}{x} \, dx\\ &=e^x-\frac {3 e^x}{20 x^4}-\frac {121 e^x}{20 x^3}-\frac {121 e^x}{40 x^2}-\frac {e^x}{40 x}+\frac {3 e^x \log (x)}{5 x^4}+\frac {1}{40} \int \frac {e^x}{x} \, dx+\frac {1}{10} \int \frac {e^x \left (2+x+x^2\right )}{x^4} \, dx-\frac {1}{10} \int \frac {e^x \left (6+2 x+x^2+x^3\right )}{x^5} \, dx\\ &=e^x-\frac {3 e^x}{20 x^4}-\frac {121 e^x}{20 x^3}-\frac {121 e^x}{40 x^2}-\frac {e^x}{40 x}+\frac {\text {Ei}(x)}{40}+\frac {3 e^x \log (x)}{5 x^4}+\frac {1}{10} \int \left (\frac {2 e^x}{x^4}+\frac {e^x}{x^3}+\frac {e^x}{x^2}\right ) \, dx-\frac {1}{10} \int \left (\frac {6 e^x}{x^5}+\frac {2 e^x}{x^4}+\frac {e^x}{x^3}+\frac {e^x}{x^2}\right ) \, dx\\ &=e^x-\frac {3 e^x}{20 x^4}-\frac {121 e^x}{20 x^3}-\frac {121 e^x}{40 x^2}-\frac {e^x}{40 x}+\frac {\text {Ei}(x)}{40}+\frac {3 e^x \log (x)}{5 x^4}-\frac {3}{5} \int \frac {e^x}{x^5} \, dx\\ &=e^x-\frac {121 e^x}{20 x^3}-\frac {121 e^x}{40 x^2}-\frac {e^x}{40 x}+\frac {\text {Ei}(x)}{40}+\frac {3 e^x \log (x)}{5 x^4}-\frac {3}{20} \int \frac {e^x}{x^4} \, dx\\ &=e^x-\frac {6 e^x}{x^3}-\frac {121 e^x}{40 x^2}-\frac {e^x}{40 x}+\frac {\text {Ei}(x)}{40}+\frac {3 e^x \log (x)}{5 x^4}-\frac {1}{20} \int \frac {e^x}{x^3} \, dx\\ &=e^x-\frac {6 e^x}{x^3}-\frac {3 e^x}{x^2}-\frac {e^x}{40 x}+\frac {\text {Ei}(x)}{40}+\frac {3 e^x \log (x)}{5 x^4}-\frac {1}{40} \int \frac {e^x}{x^2} \, dx\\ &=e^x-\frac {6 e^x}{x^3}-\frac {3 e^x}{x^2}+\frac {\text {Ei}(x)}{40}+\frac {3 e^x \log (x)}{5 x^4}-\frac {1}{40} \int \frac {e^x}{x} \, dx\\ &=e^x-\frac {6 e^x}{x^3}-\frac {3 e^x}{x^2}+\frac {3 e^x \log (x)}{5 x^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 26, normalized size = 1.08 \begin {gather*} \frac {e^x \left (5 x \left (-6-3 x+x^3\right )+3 \log (x)\right )}{5 x^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 28, normalized size = 1.17 \begin {gather*} \frac {5 \, {\left (x^{4} - 3 \, x^{2} - 6 \, x\right )} e^{x} + 3 \, e^{x} \log \relax (x)}{5 \, x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 31, normalized size = 1.29 \begin {gather*} \frac {5 \, x^{4} e^{x} - 15 \, x^{2} e^{x} - 30 \, x e^{x} + 3 \, e^{x} \log \relax (x)}{5 \, x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 1.04
method | result | size |
risch | \(\frac {3 \,{\mathrm e}^{x} \ln \relax (x )}{5 x^{4}}+\frac {\left (x^{3}-3 x -6\right ) {\mathrm e}^{x}}{x^{3}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {3 \, e^{x} \log \relax (x)}{5 \, x^{4}} + e^{x} - 3 \, \Gamma \left (-1, -x\right ) + 18 \, \Gamma \left (-3, -x\right ) - \frac {3}{5} \, \Gamma \left (-4, -x\right ) - \frac {3}{5} \, \int \frac {e^{x}}{x^{5}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.10, size = 26, normalized size = 1.08 \begin {gather*} {\mathrm {e}}^x-\frac {3\,{\mathrm {e}}^x}{x^2}-\frac {6\,{\mathrm {e}}^x}{x^3}+\frac {3\,{\mathrm {e}}^x\,\ln \relax (x)}{5\,x^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 26, normalized size = 1.08 \begin {gather*} \frac {\left (5 x^{4} - 15 x^{2} - 30 x + 3 \log {\relax (x )}\right ) e^{x}}{5 x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________