Optimal. Leaf size=21 \[ e^{2 \left (-1+\log (x)-\log \left (30-x^2\right )\right )}+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.24, antiderivative size = 19, normalized size of antiderivative = 0.90, number of steps used = 5, number of rules used = 4, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {1593, 6688, 444, 34} \begin {gather*} \frac {x^2}{e^2 \left (30-x^2\right )^2}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 34
Rule 444
Rule 1593
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-30+x^2+\frac {x^2 \left (-60-2 x^2\right )}{e^2 \left (30-x^2\right )^2}}{x \left (-30+x^2\right )} \, dx\\ &=\int \left (\frac {1}{x}-\frac {2 x \left (30+x^2\right )}{e^2 \left (-30+x^2\right )^3}\right ) \, dx\\ &=\log (x)-\frac {2 \int \frac {x \left (30+x^2\right )}{\left (-30+x^2\right )^3} \, dx}{e^2}\\ &=\log (x)-\frac {\operatorname {Subst}\left (\int \frac {30+x}{(-30+x)^3} \, dx,x,x^2\right )}{e^2}\\ &=\frac {x^2}{e^2 \left (30-x^2\right )^2}+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 26, normalized size = 1.24 \begin {gather*} \frac {30}{e^2 \left (-30+x^2\right )^2}+\frac {1}{e^2 \left (-30+x^2\right )}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 34, normalized size = 1.62 \begin {gather*} \frac {{\left ({\left (x^{4} - 60 \, x^{2} + 900\right )} e^{2} \log \relax (x) + x^{2}\right )} e^{\left (-2\right )}}{x^{4} - 60 \, x^{2} + 900} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 20, normalized size = 0.95 \begin {gather*} \frac {x^{2} e^{\left (-2\right )}}{{\left (x^{2} - 30\right )}^{2}} + \frac {1}{2} \, \log \left (x^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 17, normalized size = 0.81
method | result | size |
risch | \(\frac {{\mathrm e}^{-2} x^{2}}{\left (x^{2}-30\right )^{2}}+\ln \relax (x )\) | \(17\) |
norman | \(\frac {{\mathrm e}^{-2} x^{2}}{\left (x^{2}-30\right )^{2}}+\ln \relax (x )\) | \(19\) |
default | \(\ln \relax (x )-2 \,{\mathrm e}^{-2} \left (-\frac {15}{\left (x^{2}-30\right )^{2}}-\frac {1}{2 \left (x^{2}-30\right )}\right )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 27, normalized size = 1.29 \begin {gather*} \frac {x^{2}}{x^{4} e^{2} - 60 \, x^{2} e^{2} + 900 \, e^{2}} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.14, size = 16, normalized size = 0.76 \begin {gather*} \ln \relax (x)+\frac {x^2\,{\mathrm {e}}^{-2}}{{\left (x^2-30\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 26, normalized size = 1.24 \begin {gather*} \frac {x^{2}}{x^{4} e^{2} - 60 x^{2} e^{2} + 900 e^{2}} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________