3.11.55 \(\int e^{16-6 e^x+20 x} (-20+6 e^x) \, dx\)

Optimal. Leaf size=28 \[ 1-e^{-3 \left (2 e^x-4 x\right )-x^2+(4+x)^2} \]

________________________________________________________________________________________

Rubi [A]  time = 1.03, antiderivative size = 14, normalized size of antiderivative = 0.50, number of steps used = 44, number of rules used = 4, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2282, 2196, 2176, 2194} \begin {gather*} -e^{20 x-6 e^x+16} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^(16 - 6*E^x + 20*x)*(-20 + 6*E^x),x]

[Out]

-E^(16 - 6*E^x + 20*x)

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2196

Int[(F_)^((c_.)*(v_))*(u_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), u, x], x] /; FreeQ[{F, c
}, x] && PolynomialQ[u, x] && LinearQ[v, x] &&  !$UseGamma === True

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int e^{16-6 x} x^{19} (-20+6 x) \, dx,x,e^x\right )\\ &=\operatorname {Subst}\left (\int \left (-20 e^{16-6 x} x^{19}+6 e^{16-6 x} x^{20}\right ) \, dx,x,e^x\right )\\ &=6 \operatorname {Subst}\left (\int e^{16-6 x} x^{20} \, dx,x,e^x\right )-20 \operatorname {Subst}\left (\int e^{16-6 x} x^{19} \, dx,x,e^x\right )\\ &=\frac {10}{3} e^{16-6 e^x+19 x}-e^{16-6 e^x+20 x}+20 \operatorname {Subst}\left (\int e^{16-6 x} x^{19} \, dx,x,e^x\right )-\frac {190}{3} \operatorname {Subst}\left (\int e^{16-6 x} x^{18} \, dx,x,e^x\right )\\ &=\frac {95}{9} e^{16-6 e^x+18 x}-e^{16-6 e^x+20 x}+\frac {190}{3} \operatorname {Subst}\left (\int e^{16-6 x} x^{18} \, dx,x,e^x\right )-190 \operatorname {Subst}\left (\int e^{16-6 x} x^{17} \, dx,x,e^x\right )\\ &=\frac {95}{3} e^{16-6 e^x+17 x}-e^{16-6 e^x+20 x}+190 \operatorname {Subst}\left (\int e^{16-6 x} x^{17} \, dx,x,e^x\right )-\frac {1615}{3} \operatorname {Subst}\left (\int e^{16-6 x} x^{16} \, dx,x,e^x\right )\\ &=\frac {1615}{18} e^{16-6 e^x+16 x}-e^{16-6 e^x+20 x}+\frac {1615}{3} \operatorname {Subst}\left (\int e^{16-6 x} x^{16} \, dx,x,e^x\right )-\frac {12920}{9} \operatorname {Subst}\left (\int e^{16-6 x} x^{15} \, dx,x,e^x\right )\\ &=\frac {6460}{27} e^{16-6 e^x+15 x}-e^{16-6 e^x+20 x}+\frac {12920}{9} \operatorname {Subst}\left (\int e^{16-6 x} x^{15} \, dx,x,e^x\right )-\frac {32300}{9} \operatorname {Subst}\left (\int e^{16-6 x} x^{14} \, dx,x,e^x\right )\\ &=\frac {16150}{27} e^{16-6 e^x+14 x}-e^{16-6 e^x+20 x}+\frac {32300}{9} \operatorname {Subst}\left (\int e^{16-6 x} x^{14} \, dx,x,e^x\right )-\frac {226100}{27} \operatorname {Subst}\left (\int e^{16-6 x} x^{13} \, dx,x,e^x\right )\\ &=\frac {113050}{81} e^{16-6 e^x+13 x}-e^{16-6 e^x+20 x}+\frac {226100}{27} \operatorname {Subst}\left (\int e^{16-6 x} x^{13} \, dx,x,e^x\right )-\frac {1469650}{81} \operatorname {Subst}\left (\int e^{16-6 x} x^{12} \, dx,x,e^x\right )\\ &=\frac {734825}{243} e^{16-6 e^x+12 x}-e^{16-6 e^x+20 x}+\frac {1469650}{81} \operatorname {Subst}\left (\int e^{16-6 x} x^{12} \, dx,x,e^x\right )-\frac {2939300}{81} \operatorname {Subst}\left (\int e^{16-6 x} x^{11} \, dx,x,e^x\right )\\ &=\frac {1469650}{243} e^{16-6 e^x+11 x}-e^{16-6 e^x+20 x}+\frac {2939300}{81} \operatorname {Subst}\left (\int e^{16-6 x} x^{11} \, dx,x,e^x\right )-\frac {16166150}{243} \operatorname {Subst}\left (\int e^{16-6 x} x^{10} \, dx,x,e^x\right )\\ &=\frac {8083075}{729} e^{16-6 e^x+10 x}-e^{16-6 e^x+20 x}+\frac {16166150}{243} \operatorname {Subst}\left (\int e^{16-6 x} x^{10} \, dx,x,e^x\right )-\frac {80830750}{729} \operatorname {Subst}\left (\int e^{16-6 x} x^9 \, dx,x,e^x\right )\\ &=\frac {40415375 e^{16-6 e^x+9 x}}{2187}-e^{16-6 e^x+20 x}+\frac {80830750}{729} \operatorname {Subst}\left (\int e^{16-6 x} x^9 \, dx,x,e^x\right )-\frac {40415375}{243} \operatorname {Subst}\left (\int e^{16-6 x} x^8 \, dx,x,e^x\right )\\ &=\frac {40415375 e^{16-6 e^x+8 x}}{1458}-e^{16-6 e^x+20 x}+\frac {40415375}{243} \operatorname {Subst}\left (\int e^{16-6 x} x^8 \, dx,x,e^x\right )-\frac {161661500}{729} \operatorname {Subst}\left (\int e^{16-6 x} x^7 \, dx,x,e^x\right )\\ &=\frac {80830750 e^{16-6 e^x+7 x}}{2187}-e^{16-6 e^x+20 x}+\frac {161661500}{729} \operatorname {Subst}\left (\int e^{16-6 x} x^7 \, dx,x,e^x\right )-\frac {565815250 \operatorname {Subst}\left (\int e^{16-6 x} x^6 \, dx,x,e^x\right )}{2187}\\ &=\frac {282907625 e^{16-6 e^x+6 x}}{6561}-e^{16-6 e^x+20 x}-\frac {565815250 \operatorname {Subst}\left (\int e^{16-6 x} x^5 \, dx,x,e^x\right )}{2187}+\frac {565815250 \operatorname {Subst}\left (\int e^{16-6 x} x^6 \, dx,x,e^x\right )}{2187}\\ &=\frac {282907625 e^{16-6 e^x+5 x}}{6561}-e^{16-6 e^x+20 x}-\frac {1414538125 \operatorname {Subst}\left (\int e^{16-6 x} x^4 \, dx,x,e^x\right )}{6561}+\frac {565815250 \operatorname {Subst}\left (\int e^{16-6 x} x^5 \, dx,x,e^x\right )}{2187}\\ &=\frac {1414538125 e^{16-6 e^x+4 x}}{39366}-e^{16-6 e^x+20 x}-\frac {2829076250 \operatorname {Subst}\left (\int e^{16-6 x} x^3 \, dx,x,e^x\right )}{19683}+\frac {1414538125 \operatorname {Subst}\left (\int e^{16-6 x} x^4 \, dx,x,e^x\right )}{6561}\\ &=\frac {1414538125 e^{16-6 e^x+3 x}}{59049}-e^{16-6 e^x+20 x}-\frac {1414538125 \operatorname {Subst}\left (\int e^{16-6 x} x^2 \, dx,x,e^x\right )}{19683}+\frac {2829076250 \operatorname {Subst}\left (\int e^{16-6 x} x^3 \, dx,x,e^x\right )}{19683}\\ &=\frac {1414538125 e^{16-6 e^x+2 x}}{118098}-e^{16-6 e^x+20 x}-\frac {1414538125 \operatorname {Subst}\left (\int e^{16-6 x} x \, dx,x,e^x\right )}{59049}+\frac {1414538125 \operatorname {Subst}\left (\int e^{16-6 x} x^2 \, dx,x,e^x\right )}{19683}\\ &=\frac {1414538125 e^{16-6 e^x+x}}{354294}-e^{16-6 e^x+20 x}-\frac {1414538125 \operatorname {Subst}\left (\int e^{16-6 x} \, dx,x,e^x\right )}{354294}+\frac {1414538125 \operatorname {Subst}\left (\int e^{16-6 x} x \, dx,x,e^x\right )}{59049}\\ &=\frac {1414538125 e^{16-6 e^x}}{2125764}-e^{16-6 e^x+20 x}+\frac {1414538125 \operatorname {Subst}\left (\int e^{16-6 x} \, dx,x,e^x\right )}{354294}\\ &=-e^{16-6 e^x+20 x}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 14, normalized size = 0.50 \begin {gather*} -e^{16-6 e^x+20 x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^(16 - 6*E^x + 20*x)*(-20 + 6*E^x),x]

[Out]

-E^(16 - 6*E^x + 20*x)

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 12, normalized size = 0.43 \begin {gather*} -e^{\left (20 \, x - 6 \, e^{x} + 16\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((6*exp(x)-20)*exp(-6*exp(x)+20*x+16),x, algorithm="fricas")

[Out]

-e^(20*x - 6*e^x + 16)

________________________________________________________________________________________

giac [A]  time = 0.27, size = 12, normalized size = 0.43 \begin {gather*} -e^{\left (20 \, x - 6 \, e^{x} + 16\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((6*exp(x)-20)*exp(-6*exp(x)+20*x+16),x, algorithm="giac")

[Out]

-e^(20*x - 6*e^x + 16)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 13, normalized size = 0.46




method result size



norman \(-{\mathrm e}^{-6 \,{\mathrm e}^{x}+20 x +16}\) \(13\)
risch \(-{\mathrm e}^{-6 \,{\mathrm e}^{x}+20 x +16}\) \(13\)
default \(-20 \,{\mathrm e}^{16} \left (-\frac {{\mathrm e}^{-6 \,{\mathrm e}^{x}} {\mathrm e}^{19 x}}{6}-\frac {19 \,{\mathrm e}^{18 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{36}-\frac {19 \,{\mathrm e}^{17 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{12}-\frac {323 \,{\mathrm e}^{16 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{72}-\frac {323 \,{\mathrm e}^{15 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{27}-\frac {1615 \,{\mathrm e}^{14 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{54}-\frac {11305 \,{\mathrm e}^{13 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{162}-\frac {146965 \,{\mathrm e}^{12 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{972}-\frac {146965 \,{\mathrm e}^{11 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{486}-\frac {1616615 \,{\mathrm e}^{10 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{2916}-\frac {8083075 \,{\mathrm e}^{9 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{8748}-\frac {8083075 \,{\mathrm e}^{8 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{5832}-\frac {8083075 \,{\mathrm e}^{7 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{4374}-\frac {56581525 \,{\mathrm e}^{6 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{26244}-\frac {56581525 \,{\mathrm e}^{5 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{26244}-\frac {282907625 \,{\mathrm e}^{4 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{157464}-\frac {282907625 \,{\mathrm e}^{3 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{236196}-\frac {282907625 \,{\mathrm e}^{2 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{472392}-\frac {282907625 \,{\mathrm e}^{x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{1417176}-\frac {282907625 \,{\mathrm e}^{-6 \,{\mathrm e}^{x}}}{8503056}\right )+6 \,{\mathrm e}^{16} \left (-\frac {{\mathrm e}^{-6 \,{\mathrm e}^{x}} {\mathrm e}^{20 x}}{6}-\frac {5 \,{\mathrm e}^{-6 \,{\mathrm e}^{x}} {\mathrm e}^{19 x}}{9}-\frac {95 \,{\mathrm e}^{18 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{54}-\frac {95 \,{\mathrm e}^{17 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{18}-\frac {1615 \,{\mathrm e}^{16 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{108}-\frac {3230 \,{\mathrm e}^{15 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{81}-\frac {8075 \,{\mathrm e}^{14 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{81}-\frac {56525 \,{\mathrm e}^{13 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{243}-\frac {734825 \,{\mathrm e}^{12 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{1458}-\frac {734825 \,{\mathrm e}^{11 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{729}-\frac {8083075 \,{\mathrm e}^{10 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{4374}-\frac {40415375 \,{\mathrm e}^{9 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{13122}-\frac {40415375 \,{\mathrm e}^{8 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{8748}-\frac {40415375 \,{\mathrm e}^{7 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{6561}-\frac {282907625 \,{\mathrm e}^{6 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{39366}-\frac {282907625 \,{\mathrm e}^{5 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{39366}-\frac {1414538125 \,{\mathrm e}^{4 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{236196}-\frac {1414538125 \,{\mathrm e}^{3 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{354294}-\frac {1414538125 \,{\mathrm e}^{2 x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{708588}-\frac {1414538125 \,{\mathrm e}^{x} {\mathrm e}^{-6 \,{\mathrm e}^{x}}}{2125764}-\frac {1414538125 \,{\mathrm e}^{-6 \,{\mathrm e}^{x}}}{12754584}\right )\) \(451\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((6*exp(x)-20)*exp(-6*exp(x)+20*x+16),x,method=_RETURNVERBOSE)

[Out]

-exp(-6*exp(x)+20*x+16)

________________________________________________________________________________________

maxima [A]  time = 0.40, size = 12, normalized size = 0.43 \begin {gather*} -e^{\left (20 \, x - 6 \, e^{x} + 16\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((6*exp(x)-20)*exp(-6*exp(x)+20*x+16),x, algorithm="maxima")

[Out]

-e^(20*x - 6*e^x + 16)

________________________________________________________________________________________

mupad [B]  time = 0.05, size = 13, normalized size = 0.46 \begin {gather*} -{\mathrm {e}}^{20\,x}\,{\mathrm {e}}^{16}\,{\mathrm {e}}^{-6\,{\mathrm {e}}^x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(20*x - 6*exp(x) + 16)*(6*exp(x) - 20),x)

[Out]

-exp(20*x)*exp(16)*exp(-6*exp(x))

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 12, normalized size = 0.43 \begin {gather*} - e^{20 x - 6 e^{x} + 16} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((6*exp(x)-20)*exp(-6*exp(x)+20*x+16),x)

[Out]

-exp(20*x - 6*exp(x) + 16)

________________________________________________________________________________________