Optimal. Leaf size=24 \[ -1+x \left (x+\frac {x^2}{4}\right )-\left (e^x+x\right ) (2+\log (x)) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 35, normalized size of antiderivative = 1.46, number of steps used = 5, number of rules used = 4, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.093, Rules used = {12, 14, 2295, 2288} \begin {gather*} \frac {x^3}{4}+x^2-2 x-x \log (x)-\frac {e^x (2 x+x \log (x))}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2288
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {e^x (-4-8 x)-12 x+8 x^2+3 x^3+\left (-4 x-4 e^x x\right ) \log (x)}{x} \, dx\\ &=\frac {1}{4} \int \left (-12+8 x+3 x^2-4 \log (x)-\frac {4 e^x (1+2 x+x \log (x))}{x}\right ) \, dx\\ &=-3 x+x^2+\frac {x^3}{4}-\int \log (x) \, dx-\int \frac {e^x (1+2 x+x \log (x))}{x} \, dx\\ &=-2 x+x^2+\frac {x^3}{4}-x \log (x)-\frac {e^x (2 x+x \log (x))}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 28, normalized size = 1.17 \begin {gather*} -2 e^x-2 x+x^2+\frac {x^3}{4}-\left (e^x+x\right ) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 24, normalized size = 1.00 \begin {gather*} \frac {1}{4} \, x^{3} + x^{2} - {\left (x + e^{x}\right )} \log \relax (x) - 2 \, x - 2 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.45, size = 27, normalized size = 1.12 \begin {gather*} \frac {1}{4} \, x^{3} + x^{2} - x \log \relax (x) - e^{x} \log \relax (x) - 2 \, x - 2 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 28, normalized size = 1.17
method | result | size |
default | \(-2 x -{\mathrm e}^{x} \ln \relax (x )-2 \,{\mathrm e}^{x}+x^{2}+\frac {x^{3}}{4}-x \ln \relax (x )\) | \(28\) |
norman | \(-2 x -{\mathrm e}^{x} \ln \relax (x )-2 \,{\mathrm e}^{x}+x^{2}+\frac {x^{3}}{4}-x \ln \relax (x )\) | \(28\) |
risch | \(\frac {\left (-4 x -4 \,{\mathrm e}^{x}\right ) \ln \relax (x )}{4}+\frac {x^{3}}{4}+x^{2}-2 x -2 \,{\mathrm e}^{x}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 27, normalized size = 1.12 \begin {gather*} \frac {1}{4} \, x^{3} + x^{2} - x \log \relax (x) - e^{x} \log \relax (x) - 2 \, x - 2 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.73, size = 27, normalized size = 1.12 \begin {gather*} x^2-2\,{\mathrm {e}}^x-{\mathrm {e}}^x\,\ln \relax (x)-x\,\ln \relax (x)-2\,x+\frac {x^3}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 26, normalized size = 1.08 \begin {gather*} \frac {x^{3}}{4} + x^{2} - x \log {\relax (x )} - 2 x + \left (- \log {\relax (x )} - 2\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________