Optimal. Leaf size=25 \[ -1+x+\frac {3 x}{(3-x+\log (4)) \log \left (-x+x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {9-21 x+6 x^2+(3-6 x) \log (4)+(-9+9 x+(-3+3 x) \log (4)) \log \left (-x+x^2\right )+\left (-9+15 x-7 x^2+x^3+\left (-6+8 x-2 x^2\right ) \log (4)+(-1+x) \log ^2(4)\right ) \log ^2\left (-x+x^2\right )}{\left (-9+15 x-7 x^2+x^3+\left (-6+8 x-2 x^2\right ) \log (4)+(-1+x) \log ^2(4)\right ) \log ^2\left (-x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-6 x^2-9 \left (1+\frac {2 \log (2)}{3}\right )+3 x (7+\log (16))-(-3 (3+\log (4))+x (9+\log (64))) \log ((-1+x) x)-(-1+x) (3-x+\log (4))^2 \log ^2((-1+x) x)}{(1-x) (3-x+\log (4))^2 \log ^2((-1+x) x)} \, dx\\ &=\int \left (1+\frac {-9-6 x^2+3 x (7+\log (16))-\log (64)}{(1-x) (3-x+\log (4))^2 \log ^2((-1+x) x)}+\frac {3 (3+\log (4))-x (9+\log (64))}{(1-x) (3-x+\log (4))^2 \log ((-1+x) x)}\right ) \, dx\\ &=x+\int \frac {-9-6 x^2+3 x (7+\log (16))-\log (64)}{(1-x) (3-x+\log (4))^2 \log ^2((-1+x) x)} \, dx+\int \frac {3 (3+\log (4))-x (9+\log (64))}{(1-x) (3-x+\log (4))^2 \log ((-1+x) x)} \, dx\\ &=x+(9+\log (64)) \int \frac {1}{(3-x+\log (4))^2 \log ((-1+x) x)} \, dx+\int \frac {-3+6 x}{(1-x) (3-x+\log (4)) \log ^2((-1+x) x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 46, normalized size = 1.84 \begin {gather*} x-\frac {x \left (9-21 x+6 x^2-3 x \log (16)+\log (64)\right )}{(-1+2 x) (-3+x-\log (4))^2 \log ((-1+x) x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 45, normalized size = 1.80 \begin {gather*} \frac {{\left (x^{2} - 2 \, x \log \relax (2) - 3 \, x\right )} \log \left (x^{2} - x\right ) - 3 \, x}{{\left (x - 2 \, \log \relax (2) - 3\right )} \log \left (x^{2} - x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.83, size = 40, normalized size = 1.60 \begin {gather*} x - \frac {3 \, x}{x \log \left (x^{2} - x\right ) - 2 \, \log \relax (2) \log \left (x^{2} - x\right ) - 3 \, \log \left (x^{2} - x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.18, size = 27, normalized size = 1.08
method | result | size |
risch | \(x +\frac {3 x}{\ln \left (x^{2}-x \right ) \left (2 \ln \relax (2)+3-x \right )}\) | \(27\) |
norman | \(\frac {\left (4 \ln \relax (2)^{2}+12 \ln \relax (2)+9\right ) \ln \left (x^{2}-x \right )+3 x -\ln \left (x^{2}-x \right ) x^{2}}{\left (2 \ln \relax (2)+3-x \right ) \ln \left (x^{2}-x \right )}\) | \(61\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.60, size = 64, normalized size = 2.56 \begin {gather*} \frac {{\left (x^{2} - x {\left (2 \, \log \relax (2) + 3\right )}\right )} \log \left (x - 1\right ) + {\left (x^{2} - x {\left (2 \, \log \relax (2) + 3\right )}\right )} \log \relax (x) - 3 \, x}{{\left (x - 2 \, \log \relax (2) - 3\right )} \log \left (x - 1\right ) + {\left (x - 2 \, \log \relax (2) - 3\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.48, size = 712, normalized size = 28.48 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 19, normalized size = 0.76 \begin {gather*} x - \frac {3 x}{\left (x - 3 - 2 \log {\relax (2 )}\right ) \log {\left (x^{2} - x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________