Optimal. Leaf size=31 \[ \frac {x^3}{\left (\frac {x}{3}+\left (\frac {e^{2 e^x}}{x^2}+\frac {2}{x}\right ) x\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 2.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {162 x^5+9 x^6+e^{2 e^x} \left (135 x^4-108 e^x x^5\right )}{27 e^{6 e^x}+216 x^3+108 x^4+18 x^5+x^6+e^{4 e^x} \left (162 x+27 x^2\right )+e^{2 e^x} \left (324 x^2+108 x^3+9 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {9 x^4 \left (15 e^{2 e^x}-12 e^{2 e^x+x} x+x (18+x)\right )}{\left (3 e^{2 e^x}+x (6+x)\right )^3} \, dx\\ &=9 \int \frac {x^4 \left (15 e^{2 e^x}-12 e^{2 e^x+x} x+x (18+x)\right )}{\left (3 e^{2 e^x}+x (6+x)\right )^3} \, dx\\ &=9 \int \left (-\frac {12 e^{2 e^x+x} x^5}{\left (3 e^{2 e^x}+6 x+x^2\right )^3}+\frac {x^4 \left (15 e^{2 e^x}+18 x+x^2\right )}{\left (3 e^{2 e^x}+6 x+x^2\right )^3}\right ) \, dx\\ &=9 \int \frac {x^4 \left (15 e^{2 e^x}+18 x+x^2\right )}{\left (3 e^{2 e^x}+6 x+x^2\right )^3} \, dx-108 \int \frac {e^{2 e^x+x} x^5}{\left (3 e^{2 e^x}+6 x+x^2\right )^3} \, dx\\ &=9 \int \left (-\frac {4 x^5 (3+x)}{\left (3 e^{2 e^x}+6 x+x^2\right )^3}+\frac {5 x^4}{\left (3 e^{2 e^x}+6 x+x^2\right )^2}\right ) \, dx-108 \int \frac {e^{2 e^x+x} x^5}{\left (3 e^{2 e^x}+6 x+x^2\right )^3} \, dx\\ &=-\left (36 \int \frac {x^5 (3+x)}{\left (3 e^{2 e^x}+6 x+x^2\right )^3} \, dx\right )+45 \int \frac {x^4}{\left (3 e^{2 e^x}+6 x+x^2\right )^2} \, dx-108 \int \frac {e^{2 e^x+x} x^5}{\left (3 e^{2 e^x}+6 x+x^2\right )^3} \, dx\\ &=-\left (36 \int \left (\frac {3 x^5}{\left (3 e^{2 e^x}+6 x+x^2\right )^3}+\frac {x^6}{\left (3 e^{2 e^x}+6 x+x^2\right )^3}\right ) \, dx\right )+45 \int \frac {x^4}{\left (3 e^{2 e^x}+6 x+x^2\right )^2} \, dx-108 \int \frac {e^{2 e^x+x} x^5}{\left (3 e^{2 e^x}+6 x+x^2\right )^3} \, dx\\ &=-\left (36 \int \frac {x^6}{\left (3 e^{2 e^x}+6 x+x^2\right )^3} \, dx\right )+45 \int \frac {x^4}{\left (3 e^{2 e^x}+6 x+x^2\right )^2} \, dx-108 \int \frac {x^5}{\left (3 e^{2 e^x}+6 x+x^2\right )^3} \, dx-108 \int \frac {e^{2 e^x+x} x^5}{\left (3 e^{2 e^x}+6 x+x^2\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.56, size = 23, normalized size = 0.74 \begin {gather*} \frac {9 x^5}{\left (3 e^{2 e^x}+6 x+x^2\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 42, normalized size = 1.35 \begin {gather*} \frac {9 \, x^{5}}{x^{4} + 12 \, x^{3} + 36 \, x^{2} + 6 \, {\left (x^{2} + 6 \, x\right )} e^{\left (2 \, e^{x}\right )} + 9 \, e^{\left (4 \, e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.37, size = 46, normalized size = 1.48 \begin {gather*} \frac {9 \, x^{5}}{x^{4} + 12 \, x^{3} + 6 \, x^{2} e^{\left (2 \, e^{x}\right )} + 36 \, x^{2} + 36 \, x e^{\left (2 \, e^{x}\right )} + 9 \, e^{\left (4 \, e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 22, normalized size = 0.71
method | result | size |
risch | \(\frac {9 x^{5}}{\left (3 \,{\mathrm e}^{2 \,{\mathrm e}^{x}}+x^{2}+6 x \right )^{2}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 42, normalized size = 1.35 \begin {gather*} \frac {9 \, x^{5}}{x^{4} + 12 \, x^{3} + 36 \, x^{2} + 6 \, {\left (x^{2} + 6 \, x\right )} e^{\left (2 \, e^{x}\right )} + 9 \, e^{\left (4 \, e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {162\,x^5-{\mathrm {e}}^{2\,{\mathrm {e}}^x}\,\left (108\,x^5\,{\mathrm {e}}^x-135\,x^4\right )+9\,x^6}{27\,{\mathrm {e}}^{6\,{\mathrm {e}}^x}+{\mathrm {e}}^{2\,{\mathrm {e}}^x}\,\left (9\,x^4+108\,x^3+324\,x^2\right )+{\mathrm {e}}^{4\,{\mathrm {e}}^x}\,\left (27\,x^2+162\,x\right )+216\,x^3+108\,x^4+18\,x^5+x^6} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 41, normalized size = 1.32 \begin {gather*} \frac {9 x^{5}}{x^{4} + 12 x^{3} + 36 x^{2} + \left (6 x^{2} + 36 x\right ) e^{2 e^{x}} + 9 e^{4 e^{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________