Optimal. Leaf size=20 \[ -8+e^x+x+\log \left (\left (1-\frac {1}{x}\right )^4 x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.20, antiderivative size = 17, normalized size of antiderivative = 0.85, number of steps used = 6, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {1593, 6742, 2194, 893} \begin {gather*} x+e^x+4 \log (1-x)-2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 893
Rule 1593
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2+x+x^2+e^x \left (-x+x^2\right )}{(-1+x) x} \, dx\\ &=\int \left (e^x+\frac {2+x+x^2}{(-1+x) x}\right ) \, dx\\ &=\int e^x \, dx+\int \frac {2+x+x^2}{(-1+x) x} \, dx\\ &=e^x+\int \left (1+\frac {4}{-1+x}-\frac {2}{x}\right ) \, dx\\ &=e^x+x+4 \log (1-x)-2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 17, normalized size = 0.85 \begin {gather*} e^x+x+4 \log (1-x)-2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 14, normalized size = 0.70 \begin {gather*} x + e^{x} + 4 \, \log \left (x - 1\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 14, normalized size = 0.70 \begin {gather*} x + e^{x} + 4 \, \log \left (x - 1\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 15, normalized size = 0.75
method | result | size |
default | \(4 \ln \left (x -1\right )+x +{\mathrm e}^{x}-2 \ln \relax (x )\) | \(15\) |
norman | \(4 \ln \left (x -1\right )+x +{\mathrm e}^{x}-2 \ln \relax (x )\) | \(15\) |
risch | \(4 \ln \left (x -1\right )+x +{\mathrm e}^{x}-2 \ln \relax (x )\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} e E_{1}\left (-x + 1\right ) + x + \frac {x e^{x}}{x - 1} + \int \frac {e^{x}}{x^{2} - 2 \, x + 1}\,{d x} + 4 \, \log \left (x - 1\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.19, size = 14, normalized size = 0.70 \begin {gather*} x+4\,\ln \left (x-1\right )+{\mathrm {e}}^x-2\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 15, normalized size = 0.75 \begin {gather*} x + e^{x} - 2 \log {\relax (x )} + 4 \log {\left (x - 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________