3.11.20
Optimal. Leaf size=33
________________________________________________________________________________________
Rubi [F] time = 39.31, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^(x/(1 + x))*(x^2 + (-5 - 5*x - 6*x^2)*Log[2]) + E^((2*x)/(1 + x))*(-2 - 4*x - 2*x^2 - 243*x^4 - 486*x^5
- 243*x^6 + (2 + 4*x + 2*x^2 - 1620*x^3 - 2997*x^4 - 1134*x^5 + 243*x^6)*Log[2]))/((x^2 + 2*x^3 + x^4)*Log[2]
+ E^(x/(1 + x))*(-4*x - 8*x^2 - 4*x^3 + 162*x^5 + 324*x^6 + 162*x^7)*Log[2] + E^((2*x)/(1 + x))*(4 + 8*x + 4*
x^2 - 324*x^4 - 648*x^5 - 324*x^6 + 6561*x^8 + 13122*x^9 + 6561*x^10)*Log[2]),x]
[Out]
((1 + 14*Log[2])*Defer[Int][E^(x/(1 + x))/(x + E^(x/(1 + x))*(-2 + 81*x^4))^2, x])/Log[2] - (5*I)*2^(1/4)*Defe
r[Int][E^(x/(1 + x))/((I*2^(1/4) - 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))^2), x] + ((24964 + 16670*Log[2] + 63
99*Log[16] - 6723*Log[1024])*Defer[Int][E^(x/(1 + x))/((I*2^(1/4) - 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))^2),
x])/(37446*Sqrt[2]*Log[2]) - 5*2^(1/4)*Defer[Int][E^(x/(1 + x))/((2^(1/4) - 3*x)*(x + E^(x/(1 + x))*(-2 + 81*
x^4))^2), x] - ((24964 + 16670*Log[2] + 6399*Log[16] - 6723*Log[1024])*Defer[Int][E^(x/(1 + x))/((2^(1/4) - 3*
x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))^2), x])/(37446*Sqrt[2]*Log[2]) + (3*(1 - Log[2])*Defer[Int][(E^(x/(1 + x)
)*x)/(x + E^(x/(1 + x))*(-2 + 81*x^4))^2, x])/Log[2] + ((79 - 484*Log[2] + Log[1024])*Defer[Int][E^(x/(1 + x))
/((1 + x)^2*(x + E^(x/(1 + x))*(-2 + 81*x^4))^2), x])/(79*Log[2]) - ((12482 - 41079*Log[2] + 158*Log[16] - 324
*Log[1024])*Defer[Int][E^(x/(1 + x))/((1 + x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))^2), x])/(6241*Log[2]) - (5*I)*
2^(1/4)*Defer[Int][E^(x/(1 + x))/((I*2^(1/4) + 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))^2), x] - ((24964 + 16670
*Log[2] + 6399*Log[16] - 6723*Log[1024])*Defer[Int][E^(x/(1 + x))/((I*2^(1/4) + 3*x)*(x + E^(x/(1 + x))*(-2 +
81*x^4))^2), x])/(37446*Sqrt[2]*Log[2]) - 5*2^(1/4)*Defer[Int][E^(x/(1 + x))/((2^(1/4) + 3*x)*(x + E^(x/(1 + x
))*(-2 + 81*x^4))^2), x] + ((24964 + 16670*Log[2] + 6399*Log[16] - 6723*Log[1024])*Defer[Int][E^(x/(1 + x))/((
2^(1/4) + 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))^2), x])/(37446*Sqrt[2]*Log[2]) - ((3 - Log[8])*Defer[Int][E^(
x/(1 + x))/(x + E^(x/(1 + x))*(-2 + 81*x^4)), x])/Log[2] + (I*2^(1/4)*(1 + 566*Log[2] - 81*Log[128])*Defer[Int
][E^(x/(1 + x))/((I*2^(1/4) - 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))), x])/Log[2] + (3*Log[1024]*Defer[Int][E^
(x/(1 + x))/((I*2^(1/4) - 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))), x])/(2*Log[2]) + (2^(1/4)*(1 + 566*Log[2] -
81*Log[128])*Defer[Int][E^(x/(1 + x))/((2^(1/4) - 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))), x])/Log[2] + (3*Lo
g[1024]*Defer[Int][E^(x/(1 + x))/((2^(1/4) - 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))), x])/(2*Log[2]) + (I*2^(1
/4)*(1 + 566*Log[2] - 81*Log[128])*Defer[Int][E^(x/(1 + x))/((I*2^(1/4) + 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4
))), x])/Log[2] - (3*Log[1024]*Defer[Int][E^(x/(1 + x))/((I*2^(1/4) + 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))),
x])/(2*Log[2]) + (2^(1/4)*(1 + 566*Log[2] - 81*Log[128])*Defer[Int][E^(x/(1 + x))/((2^(1/4) + 3*x)*(x + E^(x/
(1 + x))*(-2 + 81*x^4))), x])/Log[2] - (3*Log[1024]*Defer[Int][E^(x/(1 + x))/((2^(1/4) + 3*x)*(x + E^(x/(1 + x
))*(-2 + 81*x^4))), x])/(2*Log[2])
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.28, size = 180, normalized size = 5.45
Warning: Unable to verify antiderivative.
[In]
Integrate[(E^(x/(1 + x))*(x^2 + (-5 - 5*x - 6*x^2)*Log[2]) + E^((2*x)/(1 + x))*(-2 - 4*x - 2*x^2 - 243*x^4 - 4
86*x^5 - 243*x^6 + (2 + 4*x + 2*x^2 - 1620*x^3 - 2997*x^4 - 1134*x^5 + 243*x^6)*Log[2]))/((x^2 + 2*x^3 + x^4)*
Log[2] + E^(x/(1 + x))*(-4*x - 8*x^2 - 4*x^3 + 162*x^5 + 324*x^6 + 162*x^7)*Log[2] + E^((2*x)/(1 + x))*(4 + 8*
x + 4*x^2 - 324*x^4 - 648*x^5 - 324*x^6 + 6561*x^8 + 13122*x^9 + 6561*x^10)*Log[2]),x]
[Out]
(3944312*x + 19785288*Log[2] - 1524858*x*Log[2] + 72868*Log[4] - 595423*x*Log[4] - 36434*Log[16] + 51192*x*Log
[16] - 9104*Log[128] - 204768*x*Log[128] + (3944312*E^(1 + x)^(-1)*x*(243*x^7*(-1 + Log[2]) - 10*Log[2] - 1215
*x^4*Log[2] - 81*x^5*(3 + 32*Log[2]) + x^3*(-2 + Log[4]) - x*(2 + Log[256]) - x^2*(2 + Log[256]) - 81*x^6*(7 +
Log[256])))/((2 + 2*x + 2*x^2 + 243*x^4 + 567*x^5 + 243*x^6)*(E^(1 + x)^(-1)*x + E*(-2 + 81*x^4))))/(3944312*
(-2 + 81*x^4)*Log[2])
________________________________________________________________________________________
fricas [A] time = 0.69, size = 45, normalized size = 1.36
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((243*x^6-1134*x^5-2997*x^4-1620*x^3+2*x^2+4*x+2)*log(2)-243*x^6-486*x^5-243*x^4-2*x^2-4*x-2)*exp(x
/(x+1))^2+((-6*x^2-5*x-5)*log(2)+x^2)*exp(x/(x+1)))/((6561*x^10+13122*x^9+6561*x^8-324*x^6-648*x^5-324*x^4+4*x
^2+8*x+4)*log(2)*exp(x/(x+1))^2+(162*x^7+324*x^6+162*x^5-4*x^3-8*x^2-4*x)*log(2)*exp(x/(x+1))+(x^4+2*x^3+x^2)*
log(2)),x, algorithm="fricas")
[Out]
-((x - 5)*log(2) - x)*e^(x/(x + 1))/((81*x^4 - 2)*e^(x/(x + 1))*log(2) + x*log(2))
________________________________________________________________________________________
giac [B] time = 19.53, size = 356, normalized size = 10.79
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((243*x^6-1134*x^5-2997*x^4-1620*x^3+2*x^2+4*x+2)*log(2)-243*x^6-486*x^5-243*x^4-2*x^2-4*x-2)*exp(x
/(x+1))^2+((-6*x^2-5*x-5)*log(2)+x^2)*exp(x/(x+1)))/((6561*x^10+13122*x^9+6561*x^8-324*x^6-648*x^5-324*x^4+4*x
^2+8*x+4)*log(2)*exp(x/(x+1))^2+(162*x^7+324*x^6+162*x^5-4*x^3-8*x^2-4*x)*log(2)*exp(x/(x+1))+(x^4+2*x^3+x^2)*
log(2)),x, algorithm="giac")
[Out]
-1/79*(1707*x*e^(x/(x + 1))*log(2)/(x + 1) - 2679*x^2*e^(x/(x + 1))*log(2)/(x + 1)^2 + 1865*x^3*e^(x/(x + 1))*
log(2)/(x + 1)^3 - 407*e^(x/(x + 1))*log(2) - 87*x*e^(x/(x + 1))/(x + 1) + 249*x^2*e^(x/(x + 1))/(x + 1)^2 - 2
45*x^3*e^(x/(x + 1))/(x + 1)^3 + 6*x*log(2)/(x + 1) - 18*x^2*log(2)/(x + 1)^2 + 18*x^3*log(2)/(x + 1)^3 - 6*x^
4*log(2)/(x + 1)^4 - x/(x + 1) + 3*x^2/(x + 1)^2 - 3*x^3/(x + 1)^3 + x^4/(x + 1)^4 + 2*e^(x/(x + 1)))/(8*x*e^(
x/(x + 1))*log(2)/(x + 1) - 12*x^2*e^(x/(x + 1))*log(2)/(x + 1)^2 + 8*x^3*e^(x/(x + 1))*log(2)/(x + 1)^3 + 79*
x^4*e^(x/(x + 1))*log(2)/(x + 1)^4 - 2*e^(x/(x + 1))*log(2) + x*log(2)/(x + 1) - 3*x^2*log(2)/(x + 1)^2 + 3*x^
3*log(2)/(x + 1)^3 - x^4*log(2)/(x + 1)^4)
________________________________________________________________________________________
maple [B] time = 1.18, size = 84, normalized size = 2.55
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((243*x^6-1134*x^5-2997*x^4-1620*x^3+2*x^2+4*x+2)*ln(2)-243*x^6-486*x^5-243*x^4-2*x^2-4*x-2)*exp(x/(x+1))
^2+((-6*x^2-5*x-5)*ln(2)+x^2)*exp(x/(x+1)))/((6561*x^10+13122*x^9+6561*x^8-324*x^6-648*x^5-324*x^4+4*x^2+8*x+4
)*ln(2)*exp(x/(x+1))^2+(162*x^7+324*x^6+162*x^5-4*x^3-8*x^2-4*x)*ln(2)*exp(x/(x+1))+(x^4+2*x^3+x^2)*ln(2)),x,m
ethod=_RETURNVERBOSE)
[Out]
81*((-1/81*ln(2)+1/81)*x+5/81*ln(2))/ln(2)/(81*x^4-2)+(x*ln(2)-5*ln(2)-x)*x/ln(2)/(81*x^4-2)/(81*exp(x/(x+1))*
x^4-2*exp(x/(x+1))+x)
________________________________________________________________________________________
maxima [A] time = 1.96, size = 45, normalized size = 1.36
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((243*x^6-1134*x^5-2997*x^4-1620*x^3+2*x^2+4*x+2)*log(2)-243*x^6-486*x^5-243*x^4-2*x^2-4*x-2)*exp(x
/(x+1))^2+((-6*x^2-5*x-5)*log(2)+x^2)*exp(x/(x+1)))/((6561*x^10+13122*x^9+6561*x^8-324*x^6-648*x^5-324*x^4+4*x
^2+8*x+4)*log(2)*exp(x/(x+1))^2+(162*x^7+324*x^6+162*x^5-4*x^3-8*x^2-4*x)*log(2)*exp(x/(x+1))+(x^4+2*x^3+x^2)*
log(2)),x, algorithm="maxima")
[Out]
-(x*(log(2) - 1)*e - 5*e*log(2))/(81*x^4*e*log(2) + x*e^(1/(x + 1))*log(2) - 2*e*log(2))
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(x/(x + 1))*(log(2)*(5*x + 6*x^2 + 5) - x^2) + exp((2*x)/(x + 1))*(4*x - log(2)*(4*x + 2*x^2 - 1620*x
^3 - 2997*x^4 - 1134*x^5 + 243*x^6 + 2) + 2*x^2 + 243*x^4 + 486*x^5 + 243*x^6 + 2))/(log(2)*(x^2 + 2*x^3 + x^4
) - exp(x/(x + 1))*log(2)*(4*x + 8*x^2 + 4*x^3 - 162*x^5 - 324*x^6 - 162*x^7) + exp((2*x)/(x + 1))*log(2)*(8*x
+ 4*x^2 - 324*x^4 - 648*x^5 - 324*x^6 + 6561*x^8 + 13122*x^9 + 6561*x^10 + 4)),x)
[Out]
int(-(exp(x/(x + 1))*(log(2)*(5*x + 6*x^2 + 5) - x^2) + exp((2*x)/(x + 1))*(4*x - log(2)*(4*x + 2*x^2 - 1620*x
^3 - 2997*x^4 - 1134*x^5 + 243*x^6 + 2) + 2*x^2 + 243*x^4 + 486*x^5 + 243*x^6 + 2))/(log(2)*(x^2 + 2*x^3 + x^4
) - exp(x/(x + 1))*log(2)*(4*x + 8*x^2 + 4*x^3 - 162*x^5 - 324*x^6 - 162*x^7) + exp((2*x)/(x + 1))*log(2)*(8*x
+ 4*x^2 - 324*x^4 - 648*x^5 - 324*x^6 + 6561*x^8 + 13122*x^9 + 6561*x^10 + 4)), x)
________________________________________________________________________________________
sympy [B] time = 1.62, size = 85, normalized size = 2.58
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((243*x**6-1134*x**5-2997*x**4-1620*x**3+2*x**2+4*x+2)*ln(2)-243*x**6-486*x**5-243*x**4-2*x**2-4*x-
2)*exp(x/(x+1))**2+((-6*x**2-5*x-5)*ln(2)+x**2)*exp(x/(x+1)))/((6561*x**10+13122*x**9+6561*x**8-324*x**6-648*x
**5-324*x**4+4*x**2+8*x+4)*ln(2)*exp(x/(x+1))**2+(162*x**7+324*x**6+162*x**5-4*x**3-8*x**2-4*x)*ln(2)*exp(x/(x
+1))+(x**4+2*x**3+x**2)*ln(2)),x)
[Out]
-(x*(-1 + log(2)) - 5*log(2))/(81*x**4*log(2) - 2*log(2)) + (-x**2 + x**2*log(2) - 5*x*log(2))/(81*x**5*log(2)
- 2*x*log(2) + (6561*x**8*log(2) - 324*x**4*log(2) + 4*log(2))*exp(x/(x + 1)))
________________________________________________________________________________________