Optimal. Leaf size=33 \[ \frac {5-x+\frac {x}{\log (2)}}{-2+e^{-\frac {x}{1+x}} x+81 x^4} \]
________________________________________________________________________________________
Rubi [F] time = 39.31, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {x}{1+x}} \left (x^2+\left (-5-5 x-6 x^2\right ) \log (2)\right )+e^{\frac {2 x}{1+x}} \left (-2-4 x-2 x^2-243 x^4-486 x^5-243 x^6+\left (2+4 x+2 x^2-1620 x^3-2997 x^4-1134 x^5+243 x^6\right ) \log (2)\right )}{\left (x^2+2 x^3+x^4\right ) \log (2)+e^{\frac {x}{1+x}} \left (-4 x-8 x^2-4 x^3+162 x^5+324 x^6+162 x^7\right ) \log (2)+e^{\frac {2 x}{1+x}} \left (4+8 x+4 x^2-324 x^4-648 x^5-324 x^6+6561 x^8+13122 x^9+6561 x^{10}\right ) \log (2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {x}{1+x}} \left (x^2 (1-6 \log (2))-5 \log (2)-5 x \log (2)+e^{\frac {x}{1+x}} \left (-2+243 x^6 (-1+\log (2))-1620 x^3 \log (2)-81 x^4 (3+37 \log (2))+x^2 (-2+\log (4))+\log (4)+x (-4+\log (16))-162 x^5 (3+\log (128))\right )\right )}{(1+x)^2 \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2 \log (2)} \, dx\\ &=\frac {\int \frac {e^{\frac {x}{1+x}} \left (x^2 (1-6 \log (2))-5 \log (2)-5 x \log (2)+e^{\frac {x}{1+x}} \left (-2+243 x^6 (-1+\log (2))-1620 x^3 \log (2)-81 x^4 (3+37 \log (2))+x^2 (-2+\log (4))+\log (4)+x (-4+\log (16))-162 x^5 (3+\log (128))\right )\right )}{(1+x)^2 \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{\log (2)}\\ &=\frac {\int \left (\frac {e^{\frac {x}{1+x}} \left (-2 x^3 (1-\log (2))-243 x^7 (1-\log (2))-1215 x^4 \log (2)-567 x^6 \left (1+\frac {8 \log (2)}{7}\right )-243 x^5 \left (1+\frac {32 \log (2)}{3}\right )-2 x (1+\log (16))-2 x^2 (1+\log (16))-\log (1024)\right )}{(1+x)^2 \left (2-81 x^4\right ) \left (2 e^{\frac {x}{1+x}}-x-81 e^{\frac {x}{1+x}} x^4\right )^2}+\frac {e^{\frac {x}{1+x}} \left (-2 (1-\log (2))-4 x (1-\log (2))-2 x^2 (1-\log (2))-243 x^6 (1-\log (2))-1620 x^3 \log (2)-243 x^4 \left (1+\frac {37 \log (2)}{3}\right )-486 x^5 \left (1+\log \left (4 \sqrt [3]{2}\right )\right )\right )}{(1+x)^2 \left (2-81 x^4\right ) \left (2 e^{\frac {x}{1+x}}-x-81 e^{\frac {x}{1+x}} x^4\right )}\right ) \, dx}{\log (2)}\\ &=\frac {\int \frac {e^{\frac {x}{1+x}} \left (-2 x^3 (1-\log (2))-243 x^7 (1-\log (2))-1215 x^4 \log (2)-567 x^6 \left (1+\frac {8 \log (2)}{7}\right )-243 x^5 \left (1+\frac {32 \log (2)}{3}\right )-2 x (1+\log (16))-2 x^2 (1+\log (16))-\log (1024)\right )}{(1+x)^2 \left (2-81 x^4\right ) \left (2 e^{\frac {x}{1+x}}-x-81 e^{\frac {x}{1+x}} x^4\right )^2} \, dx}{\log (2)}+\frac {\int \frac {e^{\frac {x}{1+x}} \left (-2 (1-\log (2))-4 x (1-\log (2))-2 x^2 (1-\log (2))-243 x^6 (1-\log (2))-1620 x^3 \log (2)-243 x^4 \left (1+\frac {37 \log (2)}{3}\right )-486 x^5 \left (1+\log \left (4 \sqrt [3]{2}\right )\right )\right )}{(1+x)^2 \left (2-81 x^4\right ) \left (2 e^{\frac {x}{1+x}}-x-81 e^{\frac {x}{1+x}} x^4\right )} \, dx}{\log (2)}\\ &=\frac {\int \left (-\frac {3 e^{\frac {x}{1+x}} x (-1+\log (2))}{\left (-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4\right )^2}+\frac {e^{\frac {x}{1+x}} (1+14 \log (2))}{\left (-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4\right )^2}+\frac {e^{\frac {x}{1+x}} (-180434 \log (2)+316 \log (16)-2 x (24964+16670 \log (2)+6399 \log (16)-6723 \log (1024))-7047 \log (1024))}{6241 \left (2-81 x^4\right ) \left (2 e^{\frac {x}{1+x}}-x-81 e^{\frac {x}{1+x}} x^4\right )^2}-\frac {e^{\frac {x}{1+x}} (-79+484 \log (2)-\log (1024))}{79 (1+x)^2 \left (-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4\right )^2}+\frac {e^{\frac {x}{1+x}} (-12482+41079 \log (2)-158 \log (16)+324 \log (1024))}{6241 (1+x) \left (-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4\right )^2}\right ) \, dx}{\log (2)}+\frac {\int \frac {e^{\frac {x}{1+x}} \left (-2-243 x^5 (1-\log (2))+1136 \log (2)+x^4 \left (-243-243 \log (2)-486 \log \left (4 \sqrt [3]{2}\right )\right )+x^2 \left (1134 \log (2)-486 \log \left (4 \sqrt [3]{2}\right )\right )-486 \log \left (4 \sqrt [3]{2}\right )+x^3 \left (-2754 \log (2)+486 \log \left (4 \sqrt [3]{2}\right )\right )+x \left (-2-1132 \log (2)+486 \log \left (4 \sqrt [3]{2}\right )\right )\right )}{(1+x) \left (2-81 x^4\right ) \left (2 e^{\frac {x}{1+x}}-x-81 e^{\frac {x}{1+x}} x^4\right )} \, dx}{\log (2)}\\ &=\frac {\int \frac {e^{\frac {x}{1+x}} (-180434 \log (2)+316 \log (16)-2 x (24964+16670 \log (2)+6399 \log (16)-6723 \log (1024))-7047 \log (1024))}{\left (2-81 x^4\right ) \left (2 e^{\frac {x}{1+x}}-x-81 e^{\frac {x}{1+x}} x^4\right )^2} \, dx}{6241 \log (2)}+\frac {\int \frac {e^{\frac {x}{1+x}} \left (-2-243 x^4 (1-\log (2))-4534 \log (2)+x \left (3402 \log (2)-1458 \log \left (4 \sqrt [3]{2}\right )\right )+x^3 \left (-486 \log (2)-486 \log \left (4 \sqrt [3]{2}\right )\right )+1944 \log \left (4 \sqrt [3]{2}\right )+x^2 \left (-2268 \log (2)+972 \log \left (4 \sqrt [3]{2}\right )\right )\right )}{\left (2-81 x^4\right ) \left (2 e^{\frac {x}{1+x}}-x-81 e^{\frac {x}{1+x}} x^4\right )} \, dx}{\log (2)}-\frac {(3 (-1+\log (2))) \int \frac {e^{\frac {x}{1+x}} x}{\left (-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4\right )^2} \, dx}{\log (2)}+\frac {(1+14 \log (2)) \int \frac {e^{\frac {x}{1+x}}}{\left (-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4\right )^2} \, dx}{\log (2)}-\frac {(12482-41079 \log (2)+158 \log (16)-324 \log (1024)) \int \frac {e^{\frac {x}{1+x}}}{(1+x) \left (-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4\right )^2} \, dx}{6241 \log (2)}+\frac {(79-484 \log (2)+\log (1024)) \int \frac {e^{\frac {x}{1+x}}}{(1+x)^2 \left (-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4\right )^2} \, dx}{79 \log (2)}\\ &=\frac {\int \frac {e^{\frac {x}{1+x}} (-180434 \log (2)+316 \log (16)-2 x (24964+16670 \log (2)+6399 \log (16)-6723 \log (1024))-7047 \log (1024))}{\left (2-81 x^4\right ) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{6241 \log (2)}+\frac {\int \frac {e^{\frac {x}{1+x}} \left (243 x^4 (1-\log (2))+2 (1+2267 \log (2)-324 \log (128))+162 x^3 \log (1024)\right )}{\left (2-81 x^4\right ) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )} \, dx}{\log (2)}-\frac {(3 (-1+\log (2))) \int \frac {e^{\frac {x}{1+x}} x}{\left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{\log (2)}+\frac {(1+14 \log (2)) \int \frac {e^{\frac {x}{1+x}}}{\left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{\log (2)}-\frac {(12482-41079 \log (2)+158 \log (16)-324 \log (1024)) \int \frac {e^{\frac {x}{1+x}}}{(1+x) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{6241 \log (2)}+\frac {(79-484 \log (2)+\log (1024)) \int \frac {e^{\frac {x}{1+x}}}{(1+x)^2 \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{79 \log (2)}\\ &=\frac {\int \left (\frac {2 e^{\frac {x}{1+x}} x (24964+16670 \log (2)+6399 \log (16)-6723 \log (1024))}{\left (-2+81 x^4\right ) \left (-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4\right )^2}+\frac {180434 e^{\frac {x}{1+x}} \log (2) \left (1+\frac {-316 \log (16)+7047 \log (1024)}{180434 \log (2)}\right )}{\left (-2+81 x^4\right ) \left (-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4\right )^2}\right ) \, dx}{6241 \log (2)}+\frac {\int \left (\frac {e^{\frac {x}{1+x}} (-3+\log (8))}{-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4}-\frac {2 e^{\frac {x}{1+x}} \left (4+2264 \log (2)-324 \log (128)+81 x^3 \log (1024)\right )}{\left (-2+81 x^4\right ) \left (-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4\right )}\right ) \, dx}{\log (2)}-\frac {(3 (-1+\log (2))) \int \frac {e^{\frac {x}{1+x}} x}{\left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{\log (2)}+\frac {(1+14 \log (2)) \int \frac {e^{\frac {x}{1+x}}}{\left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{\log (2)}-\frac {(12482-41079 \log (2)+158 \log (16)-324 \log (1024)) \int \frac {e^{\frac {x}{1+x}}}{(1+x) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{6241 \log (2)}+\frac {(79-484 \log (2)+\log (1024)) \int \frac {e^{\frac {x}{1+x}}}{(1+x)^2 \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{79 \log (2)}\\ &=-\frac {2 \int \frac {e^{\frac {x}{1+x}} \left (4+2264 \log (2)-324 \log (128)+81 x^3 \log (1024)\right )}{\left (-2+81 x^4\right ) \left (-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4\right )} \, dx}{\log (2)}-\frac {(3 (-1+\log (2))) \int \frac {e^{\frac {x}{1+x}} x}{\left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{\log (2)}+\frac {(1+14 \log (2)) \int \frac {e^{\frac {x}{1+x}}}{\left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{\log (2)}+\frac {\left (180434+\frac {34603 \log (4)}{\log (2)}\right ) \int \frac {e^{\frac {x}{1+x}}}{\left (-2+81 x^4\right ) \left (-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4\right )^2} \, dx}{6241}-\frac {(3-\log (8)) \int \frac {e^{\frac {x}{1+x}}}{-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4} \, dx}{\log (2)}+\frac {(2 (24964+16670 \log (2)+6399 \log (16)-6723 \log (1024))) \int \frac {e^{\frac {x}{1+x}} x}{\left (-2+81 x^4\right ) \left (-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4\right )^2} \, dx}{6241 \log (2)}-\frac {(12482-41079 \log (2)+158 \log (16)-324 \log (1024)) \int \frac {e^{\frac {x}{1+x}}}{(1+x) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{6241 \log (2)}+\frac {(79-484 \log (2)+\log (1024)) \int \frac {e^{\frac {x}{1+x}}}{(1+x)^2 \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{79 \log (2)}\\ &=-\frac {2 \int \left (\frac {4 e^{\frac {x}{1+x}} (1+566 \log (2)-81 \log (128))}{\left (-2+81 x^4\right ) \left (-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4\right )}+\frac {81 e^{\frac {x}{1+x}} x^3 \log (1024)}{\left (-2+81 x^4\right ) \left (-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4\right )}\right ) \, dx}{\log (2)}-\frac {(3 (-1+\log (2))) \int \frac {e^{\frac {x}{1+x}} x}{\left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{\log (2)}+\frac {(1+14 \log (2)) \int \frac {e^{\frac {x}{1+x}}}{\left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{\log (2)}+\frac {\left (180434+\frac {34603 \log (4)}{\log (2)}\right ) \int \frac {e^{\frac {x}{1+x}}}{\left (-2+81 x^4\right ) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{6241}-\frac {(3-\log (8)) \int \frac {e^{\frac {x}{1+x}}}{x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )} \, dx}{\log (2)}+\frac {(2 (24964+16670 \log (2)+6399 \log (16)-6723 \log (1024))) \int \frac {e^{\frac {x}{1+x}} x}{\left (-2+81 x^4\right ) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{6241 \log (2)}-\frac {(12482-41079 \log (2)+158 \log (16)-324 \log (1024)) \int \frac {e^{\frac {x}{1+x}}}{(1+x) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{6241 \log (2)}+\frac {(79-484 \log (2)+\log (1024)) \int \frac {e^{\frac {x}{1+x}}}{(1+x)^2 \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{79 \log (2)}\\ &=-\frac {(3 (-1+\log (2))) \int \frac {e^{\frac {x}{1+x}} x}{\left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{\log (2)}+\frac {(1+14 \log (2)) \int \frac {e^{\frac {x}{1+x}}}{\left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{\log (2)}+\frac {\left (180434+\frac {34603 \log (4)}{\log (2)}\right ) \int \left (-\frac {e^{\frac {x}{1+x}}}{2 \sqrt {2} \left (\sqrt {2}-9 x^2\right ) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2}-\frac {e^{\frac {x}{1+x}}}{2 \sqrt {2} \left (\sqrt {2}+9 x^2\right ) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2}\right ) \, dx}{6241}-\frac {(3-\log (8)) \int \frac {e^{\frac {x}{1+x}}}{x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )} \, dx}{\log (2)}-\frac {(8 (1+566 \log (2)-81 \log (128))) \int \frac {e^{\frac {x}{1+x}}}{\left (-2+81 x^4\right ) \left (-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4\right )} \, dx}{\log (2)}+\frac {(2 (24964+16670 \log (2)+6399 \log (16)-6723 \log (1024))) \int \left (\frac {9 e^{\frac {x}{1+x}} x}{2 \sqrt {2} \left (-9 \sqrt {2}+81 x^2\right ) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2}-\frac {9 e^{\frac {x}{1+x}} x}{2 \sqrt {2} \left (9 \sqrt {2}+81 x^2\right ) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2}\right ) \, dx}{6241 \log (2)}-\frac {(12482-41079 \log (2)+158 \log (16)-324 \log (1024)) \int \frac {e^{\frac {x}{1+x}}}{(1+x) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{6241 \log (2)}-\frac {(162 \log (1024)) \int \frac {e^{\frac {x}{1+x}} x^3}{\left (-2+81 x^4\right ) \left (-2 e^{\frac {x}{1+x}}+x+81 e^{\frac {x}{1+x}} x^4\right )} \, dx}{\log (2)}+\frac {(79-484 \log (2)+\log (1024)) \int \frac {e^{\frac {x}{1+x}}}{(1+x)^2 \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{79 \log (2)}\\ &=-\frac {(3 (-1+\log (2))) \int \frac {e^{\frac {x}{1+x}} x}{\left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{\log (2)}+\frac {(1+14 \log (2)) \int \frac {e^{\frac {x}{1+x}}}{\left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{\log (2)}-\frac {\left (180434+\frac {34603 \log (4)}{\log (2)}\right ) \int \frac {e^{\frac {x}{1+x}}}{\left (\sqrt {2}-9 x^2\right ) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{12482 \sqrt {2}}-\frac {\left (180434+\frac {34603 \log (4)}{\log (2)}\right ) \int \frac {e^{\frac {x}{1+x}}}{\left (\sqrt {2}+9 x^2\right ) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{12482 \sqrt {2}}-\frac {(3-\log (8)) \int \frac {e^{\frac {x}{1+x}}}{x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )} \, dx}{\log (2)}-\frac {(8 (1+566 \log (2)-81 \log (128))) \int \frac {e^{\frac {x}{1+x}}}{\left (-2+81 x^4\right ) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )} \, dx}{\log (2)}+\frac {(9 (24964+16670 \log (2)+6399 \log (16)-6723 \log (1024))) \int \frac {e^{\frac {x}{1+x}} x}{\left (-9 \sqrt {2}+81 x^2\right ) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{6241 \sqrt {2} \log (2)}-\frac {(9 (24964+16670 \log (2)+6399 \log (16)-6723 \log (1024))) \int \frac {e^{\frac {x}{1+x}} x}{\left (9 \sqrt {2}+81 x^2\right ) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{6241 \sqrt {2} \log (2)}-\frac {(12482-41079 \log (2)+158 \log (16)-324 \log (1024)) \int \frac {e^{\frac {x}{1+x}}}{(1+x) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{6241 \log (2)}-\frac {(162 \log (1024)) \int \frac {e^{\frac {x}{1+x}} x^3}{\left (-2+81 x^4\right ) \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )} \, dx}{\log (2)}+\frac {(79-484 \log (2)+\log (1024)) \int \frac {e^{\frac {x}{1+x}}}{(1+x)^2 \left (x+e^{\frac {x}{1+x}} \left (-2+81 x^4\right )\right )^2} \, dx}{79 \log (2)}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.28, size = 180, normalized size = 5.45 \begin {gather*} \frac {3944312 x+19785288 \log (2)-1524858 x \log (2)+72868 \log (4)-595423 x \log (4)-36434 \log (16)+51192 x \log (16)-9104 \log (128)-204768 x \log (128)+\frac {3944312 e^{\frac {1}{1+x}} x \left (243 x^7 (-1+\log (2))-10 \log (2)-1215 x^4 \log (2)-81 x^5 (3+32 \log (2))+x^3 (-2+\log (4))-x (2+\log (256))-x^2 (2+\log (256))-81 x^6 (7+\log (256))\right )}{\left (2+2 x+2 x^2+243 x^4+567 x^5+243 x^6\right ) \left (e^{\frac {1}{1+x}} x+e \left (-2+81 x^4\right )\right )}}{3944312 \left (-2+81 x^4\right ) \log (2)} \end {gather*}
Warning: Unable to verify antiderivative.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 45, normalized size = 1.36 \begin {gather*} -\frac {{\left ({\left (x - 5\right )} \log \relax (2) - x\right )} e^{\left (\frac {x}{x + 1}\right )}}{{\left (81 \, x^{4} - 2\right )} e^{\left (\frac {x}{x + 1}\right )} \log \relax (2) + x \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 19.53, size = 356, normalized size = 10.79 \begin {gather*} -\frac {\frac {1707 \, x e^{\left (\frac {x}{x + 1}\right )} \log \relax (2)}{x + 1} - \frac {2679 \, x^{2} e^{\left (\frac {x}{x + 1}\right )} \log \relax (2)}{{\left (x + 1\right )}^{2}} + \frac {1865 \, x^{3} e^{\left (\frac {x}{x + 1}\right )} \log \relax (2)}{{\left (x + 1\right )}^{3}} - 407 \, e^{\left (\frac {x}{x + 1}\right )} \log \relax (2) - \frac {87 \, x e^{\left (\frac {x}{x + 1}\right )}}{x + 1} + \frac {249 \, x^{2} e^{\left (\frac {x}{x + 1}\right )}}{{\left (x + 1\right )}^{2}} - \frac {245 \, x^{3} e^{\left (\frac {x}{x + 1}\right )}}{{\left (x + 1\right )}^{3}} + \frac {6 \, x \log \relax (2)}{x + 1} - \frac {18 \, x^{2} \log \relax (2)}{{\left (x + 1\right )}^{2}} + \frac {18 \, x^{3} \log \relax (2)}{{\left (x + 1\right )}^{3}} - \frac {6 \, x^{4} \log \relax (2)}{{\left (x + 1\right )}^{4}} - \frac {x}{x + 1} + \frac {3 \, x^{2}}{{\left (x + 1\right )}^{2}} - \frac {3 \, x^{3}}{{\left (x + 1\right )}^{3}} + \frac {x^{4}}{{\left (x + 1\right )}^{4}} + 2 \, e^{\left (\frac {x}{x + 1}\right )}}{79 \, {\left (\frac {8 \, x e^{\left (\frac {x}{x + 1}\right )} \log \relax (2)}{x + 1} - \frac {12 \, x^{2} e^{\left (\frac {x}{x + 1}\right )} \log \relax (2)}{{\left (x + 1\right )}^{2}} + \frac {8 \, x^{3} e^{\left (\frac {x}{x + 1}\right )} \log \relax (2)}{{\left (x + 1\right )}^{3}} + \frac {79 \, x^{4} e^{\left (\frac {x}{x + 1}\right )} \log \relax (2)}{{\left (x + 1\right )}^{4}} - 2 \, e^{\left (\frac {x}{x + 1}\right )} \log \relax (2) + \frac {x \log \relax (2)}{x + 1} - \frac {3 \, x^{2} \log \relax (2)}{{\left (x + 1\right )}^{2}} + \frac {3 \, x^{3} \log \relax (2)}{{\left (x + 1\right )}^{3}} - \frac {x^{4} \log \relax (2)}{{\left (x + 1\right )}^{4}}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 1.18, size = 84, normalized size = 2.55
method | result | size |
risch | \(\frac {81 \left (-\frac {\ln \relax (2)}{81}+\frac {1}{81}\right ) x +5 \ln \relax (2)}{\ln \relax (2) \left (81 x^{4}-2\right )}+\frac {\left (x \ln \relax (2)-5 \ln \relax (2)-x \right ) x}{\ln \relax (2) \left (81 x^{4}-2\right ) \left (81 \,{\mathrm e}^{\frac {x}{x +1}} x^{4}-2 \,{\mathrm e}^{\frac {x}{x +1}}+x \right )}\) | \(84\) |
norman | \(\frac {5 \,{\mathrm e}^{\frac {x}{x +1}}+\frac {\left (1+4 \ln \relax (2)\right ) x \,{\mathrm e}^{\frac {x}{x +1}}}{\ln \relax (2)}-\frac {\left (\ln \relax (2)-1\right ) x^{2} {\mathrm e}^{\frac {x}{x +1}}}{\ln \relax (2)}}{81 \,{\mathrm e}^{\frac {x}{x +1}} x^{5}+81 \,{\mathrm e}^{\frac {x}{x +1}} x^{4}+x^{2}-2 x \,{\mathrm e}^{\frac {x}{x +1}}+x -2 \,{\mathrm e}^{\frac {x}{x +1}}}\) | \(108\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.96, size = 45, normalized size = 1.36 \begin {gather*} -\frac {x {\left (\log \relax (2) - 1\right )} e - 5 \, e \log \relax (2)}{81 \, x^{4} e \log \relax (2) + x e^{\left (\frac {1}{x + 1}\right )} \log \relax (2) - 2 \, e \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^{\frac {x}{x+1}}\,\left (\ln \relax (2)\,\left (6\,x^2+5\,x+5\right )-x^2\right )+{\mathrm {e}}^{\frac {2\,x}{x+1}}\,\left (4\,x-\ln \relax (2)\,\left (243\,x^6-1134\,x^5-2997\,x^4-1620\,x^3+2\,x^2+4\,x+2\right )+2\,x^2+243\,x^4+486\,x^5+243\,x^6+2\right )}{\ln \relax (2)\,\left (x^4+2\,x^3+x^2\right )-{\mathrm {e}}^{\frac {x}{x+1}}\,\ln \relax (2)\,\left (-162\,x^7-324\,x^6-162\,x^5+4\,x^3+8\,x^2+4\,x\right )+{\mathrm {e}}^{\frac {2\,x}{x+1}}\,\ln \relax (2)\,\left (6561\,x^{10}+13122\,x^9+6561\,x^8-324\,x^6-648\,x^5-324\,x^4+4\,x^2+8\,x+4\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.62, size = 85, normalized size = 2.58 \begin {gather*} - \frac {x \left (-1 + \log {\relax (2 )}\right ) - 5 \log {\relax (2 )}}{81 x^{4} \log {\relax (2 )} - 2 \log {\relax (2 )}} + \frac {- x^{2} + x^{2} \log {\relax (2 )} - 5 x \log {\relax (2 )}}{81 x^{5} \log {\relax (2 )} - 2 x \log {\relax (2 )} + \left (6561 x^{8} \log {\relax (2 )} - 324 x^{4} \log {\relax (2 )} + 4 \log {\relax (2 )}\right ) e^{\frac {x}{x + 1}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________