3.11.20 ex1+x(x2+(55x6x2)log(2))+e2x1+x(24x2x2243x4486x5243x6+(2+4x+2x21620x32997x41134x5+243x6)log(2))(x2+2x3+x4)log(2)+ex1+x(4x8x24x3+162x5+324x6+162x7)log(2)+e2x1+x(4+8x+4x2324x4648x5324x6+6561x8+13122x9+6561x10)log(2)dx

Optimal. Leaf size=33 5x+xlog(2)2+ex1+xx+81x4

________________________________________________________________________________________

Rubi [F]  time = 39.31, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} ex1+x(x2+(55x6x2)log(2))+e2x1+x(24x2x2243x4486x5243x6+(2+4x+2x21620x32997x41134x5+243x6)log(2))(x2+2x3+x4)log(2)+ex1+x(4x8x24x3+162x5+324x6+162x7)log(2)+e2x1+x(4+8x+4x2324x4648x5324x6+6561x8+13122x9+6561x10)log(2)dx

Verification is not applicable to the result.

[In]

Int[(E^(x/(1 + x))*(x^2 + (-5 - 5*x - 6*x^2)*Log[2]) + E^((2*x)/(1 + x))*(-2 - 4*x - 2*x^2 - 243*x^4 - 486*x^5
 - 243*x^6 + (2 + 4*x + 2*x^2 - 1620*x^3 - 2997*x^4 - 1134*x^5 + 243*x^6)*Log[2]))/((x^2 + 2*x^3 + x^4)*Log[2]
 + E^(x/(1 + x))*(-4*x - 8*x^2 - 4*x^3 + 162*x^5 + 324*x^6 + 162*x^7)*Log[2] + E^((2*x)/(1 + x))*(4 + 8*x + 4*
x^2 - 324*x^4 - 648*x^5 - 324*x^6 + 6561*x^8 + 13122*x^9 + 6561*x^10)*Log[2]),x]

[Out]

((1 + 14*Log[2])*Defer[Int][E^(x/(1 + x))/(x + E^(x/(1 + x))*(-2 + 81*x^4))^2, x])/Log[2] - (5*I)*2^(1/4)*Defe
r[Int][E^(x/(1 + x))/((I*2^(1/4) - 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))^2), x] + ((24964 + 16670*Log[2] + 63
99*Log[16] - 6723*Log[1024])*Defer[Int][E^(x/(1 + x))/((I*2^(1/4) - 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))^2),
 x])/(37446*Sqrt[2]*Log[2]) - 5*2^(1/4)*Defer[Int][E^(x/(1 + x))/((2^(1/4) - 3*x)*(x + E^(x/(1 + x))*(-2 + 81*
x^4))^2), x] - ((24964 + 16670*Log[2] + 6399*Log[16] - 6723*Log[1024])*Defer[Int][E^(x/(1 + x))/((2^(1/4) - 3*
x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))^2), x])/(37446*Sqrt[2]*Log[2]) + (3*(1 - Log[2])*Defer[Int][(E^(x/(1 + x)
)*x)/(x + E^(x/(1 + x))*(-2 + 81*x^4))^2, x])/Log[2] + ((79 - 484*Log[2] + Log[1024])*Defer[Int][E^(x/(1 + x))
/((1 + x)^2*(x + E^(x/(1 + x))*(-2 + 81*x^4))^2), x])/(79*Log[2]) - ((12482 - 41079*Log[2] + 158*Log[16] - 324
*Log[1024])*Defer[Int][E^(x/(1 + x))/((1 + x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))^2), x])/(6241*Log[2]) - (5*I)*
2^(1/4)*Defer[Int][E^(x/(1 + x))/((I*2^(1/4) + 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))^2), x] - ((24964 + 16670
*Log[2] + 6399*Log[16] - 6723*Log[1024])*Defer[Int][E^(x/(1 + x))/((I*2^(1/4) + 3*x)*(x + E^(x/(1 + x))*(-2 +
81*x^4))^2), x])/(37446*Sqrt[2]*Log[2]) - 5*2^(1/4)*Defer[Int][E^(x/(1 + x))/((2^(1/4) + 3*x)*(x + E^(x/(1 + x
))*(-2 + 81*x^4))^2), x] + ((24964 + 16670*Log[2] + 6399*Log[16] - 6723*Log[1024])*Defer[Int][E^(x/(1 + x))/((
2^(1/4) + 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))^2), x])/(37446*Sqrt[2]*Log[2]) - ((3 - Log[8])*Defer[Int][E^(
x/(1 + x))/(x + E^(x/(1 + x))*(-2 + 81*x^4)), x])/Log[2] + (I*2^(1/4)*(1 + 566*Log[2] - 81*Log[128])*Defer[Int
][E^(x/(1 + x))/((I*2^(1/4) - 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))), x])/Log[2] + (3*Log[1024]*Defer[Int][E^
(x/(1 + x))/((I*2^(1/4) - 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))), x])/(2*Log[2]) + (2^(1/4)*(1 + 566*Log[2] -
 81*Log[128])*Defer[Int][E^(x/(1 + x))/((2^(1/4) - 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))), x])/Log[2] + (3*Lo
g[1024]*Defer[Int][E^(x/(1 + x))/((2^(1/4) - 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))), x])/(2*Log[2]) + (I*2^(1
/4)*(1 + 566*Log[2] - 81*Log[128])*Defer[Int][E^(x/(1 + x))/((I*2^(1/4) + 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4
))), x])/Log[2] - (3*Log[1024]*Defer[Int][E^(x/(1 + x))/((I*2^(1/4) + 3*x)*(x + E^(x/(1 + x))*(-2 + 81*x^4))),
 x])/(2*Log[2]) + (2^(1/4)*(1 + 566*Log[2] - 81*Log[128])*Defer[Int][E^(x/(1 + x))/((2^(1/4) + 3*x)*(x + E^(x/
(1 + x))*(-2 + 81*x^4))), x])/Log[2] - (3*Log[1024]*Defer[Int][E^(x/(1 + x))/((2^(1/4) + 3*x)*(x + E^(x/(1 + x
))*(-2 + 81*x^4))), x])/(2*Log[2])

Rubi steps

integral=ex1+x(x2(16log(2))5log(2)5xlog(2)+ex1+x(2+243x6(1+log(2))1620x3log(2)81x4(3+37log(2))+x2(2+log(4))+log(4)+x(4+log(16))162x5(3+log(128))))(1+x)2(x+ex1+x(2+81x4))2log(2)dx=ex1+x(x2(16log(2))5log(2)5xlog(2)+ex1+x(2+243x6(1+log(2))1620x3log(2)81x4(3+37log(2))+x2(2+log(4))+log(4)+x(4+log(16))162x5(3+log(128))))(1+x)2(x+ex1+x(2+81x4))2dxlog(2)=(ex1+x(2x3(1log(2))243x7(1log(2))1215x4log(2)567x6(1+8log(2)7)243x5(1+32log(2)3)2x(1+log(16))2x2(1+log(16))log(1024))(1+x)2(281x4)(2ex1+xx81ex1+xx4)2+ex1+x(2(1log(2))4x(1log(2))2x2(1log(2))243x6(1log(2))1620x3log(2)243x4(1+37log(2)3)486x5(1+log(423)))(1+x)2(281x4)(2ex1+xx81ex1+xx4))dxlog(2)=ex1+x(2x3(1log(2))243x7(1log(2))1215x4log(2)567x6(1+8log(2)7)243x5(1+32log(2)3)2x(1+log(16))2x2(1+log(16))log(1024))(1+x)2(281x4)(2ex1+xx81ex1+xx4)2dxlog(2)+ex1+x(2(1log(2))4x(1log(2))2x2(1log(2))243x6(1log(2))1620x3log(2)243x4(1+37log(2)3)486x5(1+log(423)))(1+x)2(281x4)(2ex1+xx81ex1+xx4)dxlog(2)=(3ex1+xx(1+log(2))(2ex1+x+x+81ex1+xx4)2+ex1+x(1+14log(2))(2ex1+x+x+81ex1+xx4)2+ex1+x(180434log(2)+316log(16)2x(24964+16670log(2)+6399log(16)6723log(1024))7047log(1024))6241(281x4)(2ex1+xx81ex1+xx4)2ex1+x(79+484log(2)log(1024))79(1+x)2(2ex1+x+x+81ex1+xx4)2+ex1+x(12482+41079log(2)158log(16)+324log(1024))6241(1+x)(2ex1+x+x+81ex1+xx4)2)dxlog(2)+ex1+x(2243x5(1log(2))+1136log(2)+x4(243243log(2)486log(423))+x2(1134log(2)486log(423))486log(423)+x3(2754log(2)+486log(423))+x(21132log(2)+486log(423)))(1+x)(281x4)(2ex1+xx81ex1+xx4)dxlog(2)=ex1+x(180434log(2)+316log(16)2x(24964+16670log(2)+6399log(16)6723log(1024))7047log(1024))(281x4)(2ex1+xx81ex1+xx4)2dx6241log(2)+ex1+x(2243x4(1log(2))4534log(2)+x(3402log(2)1458log(423))+x3(486log(2)486log(423))+1944log(423)+x2(2268log(2)+972log(423)))(281x4)(2ex1+xx81ex1+xx4)dxlog(2)(3(1+log(2)))ex1+xx(2ex1+x+x+81ex1+xx4)2dxlog(2)+(1+14log(2))ex1+x(2ex1+x+x+81ex1+xx4)2dxlog(2)(1248241079log(2)+158log(16)324log(1024))ex1+x(1+x)(2ex1+x+x+81ex1+xx4)2dx6241log(2)+(79484log(2)+log(1024))ex1+x(1+x)2(2ex1+x+x+81ex1+xx4)2dx79log(2)=ex1+x(180434log(2)+316log(16)2x(24964+16670log(2)+6399log(16)6723log(1024))7047log(1024))(281x4)(x+ex1+x(2+81x4))2dx6241log(2)+ex1+x(243x4(1log(2))+2(1+2267log(2)324log(128))+162x3log(1024))(281x4)(x+ex1+x(2+81x4))dxlog(2)(3(1+log(2)))ex1+xx(x+ex1+x(2+81x4))2dxlog(2)+(1+14log(2))ex1+x(x+ex1+x(2+81x4))2dxlog(2)(1248241079log(2)+158log(16)324log(1024))ex1+x(1+x)(x+ex1+x(2+81x4))2dx6241log(2)+(79484log(2)+log(1024))ex1+x(1+x)2(x+ex1+x(2+81x4))2dx79log(2)=(2ex1+xx(24964+16670log(2)+6399log(16)6723log(1024))(2+81x4)(2ex1+x+x+81ex1+xx4)2+180434ex1+xlog(2)(1+316log(16)+7047log(1024)180434log(2))(2+81x4)(2ex1+x+x+81ex1+xx4)2)dx6241log(2)+(ex1+x(3+log(8))2ex1+x+x+81ex1+xx42ex1+x(4+2264log(2)324log(128)+81x3log(1024))(2+81x4)(2ex1+x+x+81ex1+xx4))dxlog(2)(3(1+log(2)))ex1+xx(x+ex1+x(2+81x4))2dxlog(2)+(1+14log(2))ex1+x(x+ex1+x(2+81x4))2dxlog(2)(1248241079log(2)+158log(16)324log(1024))ex1+x(1+x)(x+ex1+x(2+81x4))2dx6241log(2)+(79484log(2)+log(1024))ex1+x(1+x)2(x+ex1+x(2+81x4))2dx79log(2)=2ex1+x(4+2264log(2)324log(128)+81x3log(1024))(2+81x4)(2ex1+x+x+81ex1+xx4)dxlog(2)(3(1+log(2)))ex1+xx(x+ex1+x(2+81x4))2dxlog(2)+(1+14log(2))ex1+x(x+ex1+x(2+81x4))2dxlog(2)+(180434+34603log(4)log(2))ex1+x(2+81x4)(2ex1+x+x+81ex1+xx4)2dx6241(3log(8))ex1+x2ex1+x+x+81ex1+xx4dxlog(2)+(2(24964+16670log(2)+6399log(16)6723log(1024)))ex1+xx(2+81x4)(2ex1+x+x+81ex1+xx4)2dx6241log(2)(1248241079log(2)+158log(16)324log(1024))ex1+x(1+x)(x+ex1+x(2+81x4))2dx6241log(2)+(79484log(2)+log(1024))ex1+x(1+x)2(x+ex1+x(2+81x4))2dx79log(2)=2(4ex1+x(1+566log(2)81log(128))(2+81x4)(2ex1+x+x+81ex1+xx4)+81ex1+xx3log(1024)(2+81x4)(2ex1+x+x+81ex1+xx4))dxlog(2)(3(1+log(2)))ex1+xx(x+ex1+x(2+81x4))2dxlog(2)+(1+14log(2))ex1+x(x+ex1+x(2+81x4))2dxlog(2)+(180434+34603log(4)log(2))ex1+x(2+81x4)(x+ex1+x(2+81x4))2dx6241(3log(8))ex1+xx+ex1+x(2+81x4)dxlog(2)+(2(24964+16670log(2)+6399log(16)6723log(1024)))ex1+xx(2+81x4)(x+ex1+x(2+81x4))2dx6241log(2)(1248241079log(2)+158log(16)324log(1024))ex1+x(1+x)(x+ex1+x(2+81x4))2dx6241log(2)+(79484log(2)+log(1024))ex1+x(1+x)2(x+ex1+x(2+81x4))2dx79log(2)=(3(1+log(2)))ex1+xx(x+ex1+x(2+81x4))2dxlog(2)+(1+14log(2))ex1+x(x+ex1+x(2+81x4))2dxlog(2)+(180434+34603log(4)log(2))(ex1+x22(29x2)(x+ex1+x(2+81x4))2ex1+x22(2+9x2)(x+ex1+x(2+81x4))2)dx6241(3log(8))ex1+xx+ex1+x(2+81x4)dxlog(2)(8(1+566log(2)81log(128)))ex1+x(2+81x4)(2ex1+x+x+81ex1+xx4)dxlog(2)+(2(24964+16670log(2)+6399log(16)6723log(1024)))(9ex1+xx22(92+81x2)(x+ex1+x(2+81x4))29ex1+xx22(92+81x2)(x+ex1+x(2+81x4))2)dx6241log(2)(1248241079log(2)+158log(16)324log(1024))ex1+x(1+x)(x+ex1+x(2+81x4))2dx6241log(2)(162log(1024))ex1+xx3(2+81x4)(2ex1+x+x+81ex1+xx4)dxlog(2)+(79484log(2)+log(1024))ex1+x(1+x)2(x+ex1+x(2+81x4))2dx79log(2)=(3(1+log(2)))ex1+xx(x+ex1+x(2+81x4))2dxlog(2)+(1+14log(2))ex1+x(x+ex1+x(2+81x4))2dxlog(2)(180434+34603log(4)log(2))ex1+x(29x2)(x+ex1+x(2+81x4))2dx124822(180434+34603log(4)log(2))ex1+x(2+9x2)(x+ex1+x(2+81x4))2dx124822(3log(8))ex1+xx+ex1+x(2+81x4)dxlog(2)(8(1+566log(2)81log(128)))ex1+x(2+81x4)(x+ex1+x(2+81x4))dxlog(2)+(9(24964+16670log(2)+6399log(16)6723log(1024)))ex1+xx(92+81x2)(x+ex1+x(2+81x4))2dx62412log(2)(9(24964+16670log(2)+6399log(16)6723log(1024)))ex1+xx(92+81x2)(x+ex1+x(2+81x4))2dx62412log(2)(1248241079log(2)+158log(16)324log(1024))ex1+x(1+x)(x+ex1+x(2+81x4))2dx6241log(2)(162log(1024))ex1+xx3(2+81x4)(x+ex1+x(2+81x4))dxlog(2)+(79484log(2)+log(1024))ex1+x(1+x)2(x+ex1+x(2+81x4))2dx79log(2)=Rest of rules removed due to large latex content

________________________________________________________________________________________

Mathematica [B]  time = 0.28, size = 180, normalized size = 5.45 3944312x+19785288log(2)1524858xlog(2)+72868log(4)595423xlog(4)36434log(16)+51192xlog(16)9104log(128)204768xlog(128)+3944312e11+xx(243x7(1+log(2))10log(2)1215x4log(2)81x5(3+32log(2))+x3(2+log(4))x(2+log(256))x2(2+log(256))81x6(7+log(256)))(2+2x+2x2+243x4+567x5+243x6)(e11+xx+e(2+81x4))3944312(2+81x4)log(2)

Warning: Unable to verify antiderivative.

[In]

Integrate[(E^(x/(1 + x))*(x^2 + (-5 - 5*x - 6*x^2)*Log[2]) + E^((2*x)/(1 + x))*(-2 - 4*x - 2*x^2 - 243*x^4 - 4
86*x^5 - 243*x^6 + (2 + 4*x + 2*x^2 - 1620*x^3 - 2997*x^4 - 1134*x^5 + 243*x^6)*Log[2]))/((x^2 + 2*x^3 + x^4)*
Log[2] + E^(x/(1 + x))*(-4*x - 8*x^2 - 4*x^3 + 162*x^5 + 324*x^6 + 162*x^7)*Log[2] + E^((2*x)/(1 + x))*(4 + 8*
x + 4*x^2 - 324*x^4 - 648*x^5 - 324*x^6 + 6561*x^8 + 13122*x^9 + 6561*x^10)*Log[2]),x]

[Out]

(3944312*x + 19785288*Log[2] - 1524858*x*Log[2] + 72868*Log[4] - 595423*x*Log[4] - 36434*Log[16] + 51192*x*Log
[16] - 9104*Log[128] - 204768*x*Log[128] + (3944312*E^(1 + x)^(-1)*x*(243*x^7*(-1 + Log[2]) - 10*Log[2] - 1215
*x^4*Log[2] - 81*x^5*(3 + 32*Log[2]) + x^3*(-2 + Log[4]) - x*(2 + Log[256]) - x^2*(2 + Log[256]) - 81*x^6*(7 +
 Log[256])))/((2 + 2*x + 2*x^2 + 243*x^4 + 567*x^5 + 243*x^6)*(E^(1 + x)^(-1)*x + E*(-2 + 81*x^4))))/(3944312*
(-2 + 81*x^4)*Log[2])

________________________________________________________________________________________

fricas [A]  time = 0.69, size = 45, normalized size = 1.36 ((x5)log(2)x)e(xx+1)(81x42)e(xx+1)log(2)+xlog(2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((243*x^6-1134*x^5-2997*x^4-1620*x^3+2*x^2+4*x+2)*log(2)-243*x^6-486*x^5-243*x^4-2*x^2-4*x-2)*exp(x
/(x+1))^2+((-6*x^2-5*x-5)*log(2)+x^2)*exp(x/(x+1)))/((6561*x^10+13122*x^9+6561*x^8-324*x^6-648*x^5-324*x^4+4*x
^2+8*x+4)*log(2)*exp(x/(x+1))^2+(162*x^7+324*x^6+162*x^5-4*x^3-8*x^2-4*x)*log(2)*exp(x/(x+1))+(x^4+2*x^3+x^2)*
log(2)),x, algorithm="fricas")

[Out]

-((x - 5)*log(2) - x)*e^(x/(x + 1))/((81*x^4 - 2)*e^(x/(x + 1))*log(2) + x*log(2))

________________________________________________________________________________________

giac [B]  time = 19.53, size = 356, normalized size = 10.79 1707xe(xx+1)log(2)x+12679x2e(xx+1)log(2)(x+1)2+1865x3e(xx+1)log(2)(x+1)3407e(xx+1)log(2)87xe(xx+1)x+1+249x2e(xx+1)(x+1)2245x3e(xx+1)(x+1)3+6xlog(2)x+118x2log(2)(x+1)2+18x3log(2)(x+1)36x4log(2)(x+1)4xx+1+3x2(x+1)23x3(x+1)3+x4(x+1)4+2e(xx+1)79(8xe(xx+1)log(2)x+112x2e(xx+1)log(2)(x+1)2+8x3e(xx+1)log(2)(x+1)3+79x4e(xx+1)log(2)(x+1)42e(xx+1)log(2)+xlog(2)x+13x2log(2)(x+1)2+3x3log(2)(x+1)3x4log(2)(x+1)4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((243*x^6-1134*x^5-2997*x^4-1620*x^3+2*x^2+4*x+2)*log(2)-243*x^6-486*x^5-243*x^4-2*x^2-4*x-2)*exp(x
/(x+1))^2+((-6*x^2-5*x-5)*log(2)+x^2)*exp(x/(x+1)))/((6561*x^10+13122*x^9+6561*x^8-324*x^6-648*x^5-324*x^4+4*x
^2+8*x+4)*log(2)*exp(x/(x+1))^2+(162*x^7+324*x^6+162*x^5-4*x^3-8*x^2-4*x)*log(2)*exp(x/(x+1))+(x^4+2*x^3+x^2)*
log(2)),x, algorithm="giac")

[Out]

-1/79*(1707*x*e^(x/(x + 1))*log(2)/(x + 1) - 2679*x^2*e^(x/(x + 1))*log(2)/(x + 1)^2 + 1865*x^3*e^(x/(x + 1))*
log(2)/(x + 1)^3 - 407*e^(x/(x + 1))*log(2) - 87*x*e^(x/(x + 1))/(x + 1) + 249*x^2*e^(x/(x + 1))/(x + 1)^2 - 2
45*x^3*e^(x/(x + 1))/(x + 1)^3 + 6*x*log(2)/(x + 1) - 18*x^2*log(2)/(x + 1)^2 + 18*x^3*log(2)/(x + 1)^3 - 6*x^
4*log(2)/(x + 1)^4 - x/(x + 1) + 3*x^2/(x + 1)^2 - 3*x^3/(x + 1)^3 + x^4/(x + 1)^4 + 2*e^(x/(x + 1)))/(8*x*e^(
x/(x + 1))*log(2)/(x + 1) - 12*x^2*e^(x/(x + 1))*log(2)/(x + 1)^2 + 8*x^3*e^(x/(x + 1))*log(2)/(x + 1)^3 + 79*
x^4*e^(x/(x + 1))*log(2)/(x + 1)^4 - 2*e^(x/(x + 1))*log(2) + x*log(2)/(x + 1) - 3*x^2*log(2)/(x + 1)^2 + 3*x^
3*log(2)/(x + 1)^3 - x^4*log(2)/(x + 1)^4)

________________________________________________________________________________________

maple [B]  time = 1.18, size = 84, normalized size = 2.55




method result size



risch 81(ln(2)81+181)x+5ln(2)ln(2)(81x42)+(xln(2)5ln(2)x)xln(2)(81x42)(81exx+1x42exx+1+x) 84
norman 5exx+1+(1+4ln(2))xexx+1ln(2)(ln(2)1)x2exx+1ln(2)81exx+1x5+81exx+1x4+x22xexx+1+x2exx+1 108



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((243*x^6-1134*x^5-2997*x^4-1620*x^3+2*x^2+4*x+2)*ln(2)-243*x^6-486*x^5-243*x^4-2*x^2-4*x-2)*exp(x/(x+1))
^2+((-6*x^2-5*x-5)*ln(2)+x^2)*exp(x/(x+1)))/((6561*x^10+13122*x^9+6561*x^8-324*x^6-648*x^5-324*x^4+4*x^2+8*x+4
)*ln(2)*exp(x/(x+1))^2+(162*x^7+324*x^6+162*x^5-4*x^3-8*x^2-4*x)*ln(2)*exp(x/(x+1))+(x^4+2*x^3+x^2)*ln(2)),x,m
ethod=_RETURNVERBOSE)

[Out]

81*((-1/81*ln(2)+1/81)*x+5/81*ln(2))/ln(2)/(81*x^4-2)+(x*ln(2)-5*ln(2)-x)*x/ln(2)/(81*x^4-2)/(81*exp(x/(x+1))*
x^4-2*exp(x/(x+1))+x)

________________________________________________________________________________________

maxima [A]  time = 1.96, size = 45, normalized size = 1.36 x(log(2)1)e5elog(2)81x4elog(2)+xe(1x+1)log(2)2elog(2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((243*x^6-1134*x^5-2997*x^4-1620*x^3+2*x^2+4*x+2)*log(2)-243*x^6-486*x^5-243*x^4-2*x^2-4*x-2)*exp(x
/(x+1))^2+((-6*x^2-5*x-5)*log(2)+x^2)*exp(x/(x+1)))/((6561*x^10+13122*x^9+6561*x^8-324*x^6-648*x^5-324*x^4+4*x
^2+8*x+4)*log(2)*exp(x/(x+1))^2+(162*x^7+324*x^6+162*x^5-4*x^3-8*x^2-4*x)*log(2)*exp(x/(x+1))+(x^4+2*x^3+x^2)*
log(2)),x, algorithm="maxima")

[Out]

-(x*(log(2) - 1)*e - 5*e*log(2))/(81*x^4*e*log(2) + x*e^(1/(x + 1))*log(2) - 2*e*log(2))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 exx+1(ln(2)(6x2+5x+5)x2)+e2xx+1(4xln(2)(243x61134x52997x41620x3+2x2+4x+2)+2x2+243x4+486x5+243x6+2)ln(2)(x4+2x3+x2)exx+1ln(2)(162x7324x6162x5+4x3+8x2+4x)+e2xx+1ln(2)(6561x10+13122x9+6561x8324x6648x5324x4+4x2+8x+4)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(x/(x + 1))*(log(2)*(5*x + 6*x^2 + 5) - x^2) + exp((2*x)/(x + 1))*(4*x - log(2)*(4*x + 2*x^2 - 1620*x
^3 - 2997*x^4 - 1134*x^5 + 243*x^6 + 2) + 2*x^2 + 243*x^4 + 486*x^5 + 243*x^6 + 2))/(log(2)*(x^2 + 2*x^3 + x^4
) - exp(x/(x + 1))*log(2)*(4*x + 8*x^2 + 4*x^3 - 162*x^5 - 324*x^6 - 162*x^7) + exp((2*x)/(x + 1))*log(2)*(8*x
 + 4*x^2 - 324*x^4 - 648*x^5 - 324*x^6 + 6561*x^8 + 13122*x^9 + 6561*x^10 + 4)),x)

[Out]

int(-(exp(x/(x + 1))*(log(2)*(5*x + 6*x^2 + 5) - x^2) + exp((2*x)/(x + 1))*(4*x - log(2)*(4*x + 2*x^2 - 1620*x
^3 - 2997*x^4 - 1134*x^5 + 243*x^6 + 2) + 2*x^2 + 243*x^4 + 486*x^5 + 243*x^6 + 2))/(log(2)*(x^2 + 2*x^3 + x^4
) - exp(x/(x + 1))*log(2)*(4*x + 8*x^2 + 4*x^3 - 162*x^5 - 324*x^6 - 162*x^7) + exp((2*x)/(x + 1))*log(2)*(8*x
 + 4*x^2 - 324*x^4 - 648*x^5 - 324*x^6 + 6561*x^8 + 13122*x^9 + 6561*x^10 + 4)), x)

________________________________________________________________________________________

sympy [B]  time = 1.62, size = 85, normalized size = 2.58 x(1+log(2))5log(2)81x4log(2)2log(2)+x2+x2log(2)5xlog(2)81x5log(2)2xlog(2)+(6561x8log(2)324x4log(2)+4log(2))exx+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((243*x**6-1134*x**5-2997*x**4-1620*x**3+2*x**2+4*x+2)*ln(2)-243*x**6-486*x**5-243*x**4-2*x**2-4*x-
2)*exp(x/(x+1))**2+((-6*x**2-5*x-5)*ln(2)+x**2)*exp(x/(x+1)))/((6561*x**10+13122*x**9+6561*x**8-324*x**6-648*x
**5-324*x**4+4*x**2+8*x+4)*ln(2)*exp(x/(x+1))**2+(162*x**7+324*x**6+162*x**5-4*x**3-8*x**2-4*x)*ln(2)*exp(x/(x
+1))+(x**4+2*x**3+x**2)*ln(2)),x)

[Out]

-(x*(-1 + log(2)) - 5*log(2))/(81*x**4*log(2) - 2*log(2)) + (-x**2 + x**2*log(2) - 5*x*log(2))/(81*x**5*log(2)
 - 2*x*log(2) + (6561*x**8*log(2) - 324*x**4*log(2) + 4*log(2))*exp(x/(x + 1)))

________________________________________________________________________________________