Optimal. Leaf size=28 \[ e^{\frac {e^{x-\frac {5}{x+\frac {5}{4} x (1+x)}}}{x}+2 x} \]
________________________________________________________________________________________
Rubi [F] time = 46.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {e^{-\frac {20-9 x^2-5 x^3}{9 x+5 x^2}} \left (1+2 e^{\frac {20-9 x^2-5 x^3}{9 x+5 x^2}} x^2\right )}{x}-\frac {20-9 x^2-5 x^3}{9 x+5 x^2}\right ) \left (180+119 x-9 x^2+65 x^3+25 x^4+e^{\frac {20-9 x^2-5 x^3}{9 x+5 x^2}} \left (162 x^3+180 x^4+50 x^5\right )\right )}{81 x^3+90 x^4+25 x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {e^{-\frac {20-9 x^2-5 x^3}{9 x+5 x^2}} \left (1+2 e^{\frac {20-9 x^2-5 x^3}{9 x+5 x^2}} x^2\right )}{x}-\frac {20-9 x^2-5 x^3}{9 x+5 x^2}\right ) \left (180+119 x-9 x^2+65 x^3+25 x^4+e^{\frac {20-9 x^2-5 x^3}{9 x+5 x^2}} \left (162 x^3+180 x^4+50 x^5\right )\right )}{x^3 \left (81+90 x+25 x^2\right )} \, dx\\ &=\int \frac {\exp \left (\frac {e^{-\frac {20-9 x^2-5 x^3}{9 x+5 x^2}} \left (1+2 e^{\frac {20-9 x^2-5 x^3}{9 x+5 x^2}} x^2\right )}{x}-\frac {20-9 x^2-5 x^3}{9 x+5 x^2}\right ) \left (180+119 x-9 x^2+65 x^3+25 x^4+e^{\frac {20-9 x^2-5 x^3}{9 x+5 x^2}} \left (162 x^3+180 x^4+50 x^5\right )\right )}{x^3 (9+5 x)^2} \, dx\\ &=\int \frac {\exp \left (\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}\right ) \left (180+119 x-9 x^2+65 x^3+25 x^4+2 e^{\frac {20-9 x^2-5 x^3}{9 x+5 x^2}} x^3 (9+5 x)^2\right )}{x^3 (9+5 x)^2} \, dx\\ &=\int \left (2 \exp \left (\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}+\frac {20-9 x^2-5 x^3}{x (9+5 x)}\right )+\frac {65 \exp \left (\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}\right )}{(9+5 x)^2}+\frac {180 \exp \left (\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}\right )}{x^3 (9+5 x)^2}+\frac {119 \exp \left (\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}\right )}{x^2 (9+5 x)^2}-\frac {9 \exp \left (\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}\right )}{x (9+5 x)^2}+\frac {25 \exp \left (\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}\right ) x}{(9+5 x)^2}\right ) \, dx\\ &=2 \int \exp \left (\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}+\frac {20-9 x^2-5 x^3}{x (9+5 x)}\right ) \, dx-9 \int \frac {\exp \left (\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}\right )}{x (9+5 x)^2} \, dx+25 \int \frac {\exp \left (\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}\right ) x}{(9+5 x)^2} \, dx+65 \int \frac {\exp \left (\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}\right )}{(9+5 x)^2} \, dx+119 \int \frac {\exp \left (\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}\right )}{x^2 (9+5 x)^2} \, dx+180 \int \frac {\exp \left (\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}\right )}{x^3 (9+5 x)^2} \, dx\\ &=2 \int e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}+2 x} \, dx-9 \int \left (\frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{81 x}-\frac {5 e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{9 (9+5 x)^2}-\frac {5 e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{81 (9+5 x)}\right ) \, dx+25 \int \left (-\frac {9 e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{5 (9+5 x)^2}+\frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{5 (9+5 x)}\right ) \, dx+65 \int \frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{(9+5 x)^2} \, dx+119 \int \left (\frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{81 x^2}-\frac {10 e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{729 x}+\frac {25 e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{81 (9+5 x)^2}+\frac {50 e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{729 (9+5 x)}\right ) \, dx+180 \int \left (\frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{81 x^3}-\frac {10 e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{729 x^2}+\frac {25 e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{2187 x}-\frac {125 e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{729 (9+5 x)^2}-\frac {125 e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{2187 (9+5 x)}\right ) \, dx\\ &=-\left (\frac {1}{9} \int \frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{x} \, dx\right )+\frac {5}{9} \int \frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{9+5 x} \, dx+\frac {119}{81} \int \frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{x^2} \, dx-\frac {1190}{729} \int \frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{x} \, dx+2 \int e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}+2 x} \, dx+\frac {500}{243} \int \frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{x} \, dx+\frac {20}{9} \int \frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{x^3} \, dx-\frac {200}{81} \int \frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{x^2} \, dx+5 \int \frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{(9+5 x)^2} \, dx+5 \int \frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{9+5 x} \, dx+\frac {5950}{729} \int \frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{9+5 x} \, dx-\frac {2500}{243} \int \frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{9+5 x} \, dx-\frac {2500}{81} \int \frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{(9+5 x)^2} \, dx+\frac {2975}{81} \int \frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{(9+5 x)^2} \, dx-45 \int \frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{(9+5 x)^2} \, dx+65 \int \frac {e^{\frac {e^{x-\frac {20}{9 x+5 x^2}}}{x}-\frac {20-27 x^2-15 x^3}{x (9+5 x)}}}{(9+5 x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 32, normalized size = 1.14 \begin {gather*} e^{\frac {e^{-\frac {20}{9 x}+x+\frac {100}{9 (9+5 x)}}}{x}+2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.83, size = 82, normalized size = 2.93 \begin {gather*} e^{\left (\frac {15 \, x^{3} + 27 \, x^{2} + {\left (5 \, x + 9\right )} e^{\left (\frac {5 \, x^{3} + 9 \, x^{2} - 20}{5 \, x^{2} + 9 \, x}\right )} - 20}{5 \, x^{2} + 9 \, x} - \frac {5 \, x^{3} + 9 \, x^{2} - 20}{5 \, x^{2} + 9 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (25 \, x^{4} + 65 \, x^{3} - 9 \, x^{2} + 2 \, {\left (25 \, x^{5} + 90 \, x^{4} + 81 \, x^{3}\right )} e^{\left (-\frac {5 \, x^{3} + 9 \, x^{2} - 20}{5 \, x^{2} + 9 \, x}\right )} + 119 \, x + 180\right )} e^{\left (\frac {{\left (2 \, x^{2} e^{\left (-\frac {5 \, x^{3} + 9 \, x^{2} - 20}{5 \, x^{2} + 9 \, x}\right )} + 1\right )} e^{\left (\frac {5 \, x^{3} + 9 \, x^{2} - 20}{5 \, x^{2} + 9 \, x}\right )}}{x} + \frac {5 \, x^{3} + 9 \, x^{2} - 20}{5 \, x^{2} + 9 \, x}\right )}}{25 \, x^{5} + 90 \, x^{4} + 81 \, x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.15, size = 62, normalized size = 2.21
method | result | size |
risch | \({\mathrm e}^{\frac {\left (2 x^{2} {\mathrm e}^{-\frac {5 x^{3}+9 x^{2}-20}{x \left (5 x +9\right )}}+1\right ) {\mathrm e}^{\frac {5 x^{3}+9 x^{2}-20}{x \left (5 x +9\right )}}}{x}}\) | \(62\) |
norman | \(\frac {\left (9 x^{2} {\mathrm e}^{\frac {-5 x^{3}-9 x^{2}+20}{5 x^{2}+9 x}} {\mathrm e}^{\frac {\left (2 x^{2} {\mathrm e}^{\frac {-5 x^{3}-9 x^{2}+20}{5 x^{2}+9 x}}+1\right ) {\mathrm e}^{-\frac {-5 x^{3}-9 x^{2}+20}{5 x^{2}+9 x}}}{x}}+5 x^{3} {\mathrm e}^{\frac {-5 x^{3}-9 x^{2}+20}{5 x^{2}+9 x}} {\mathrm e}^{\frac {\left (2 x^{2} {\mathrm e}^{\frac {-5 x^{3}-9 x^{2}+20}{5 x^{2}+9 x}}+1\right ) {\mathrm e}^{-\frac {-5 x^{3}-9 x^{2}+20}{5 x^{2}+9 x}}}{x}}\right ) {\mathrm e}^{-\frac {-5 x^{3}-9 x^{2}+20}{5 x^{2}+9 x}}}{x^{2} \left (5 x +9\right )}\) | \(228\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 26, normalized size = 0.93 \begin {gather*} e^{\left (2 \, x + \frac {e^{\left (x + \frac {100}{9 \, {\left (5 \, x + 9\right )}} - \frac {20}{9 \, x}\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.74, size = 48, normalized size = 1.71 \begin {gather*} {\mathrm {e}}^{\frac {{\mathrm {e}}^{\frac {5\,x^2}{5\,x+9}}\,{\mathrm {e}}^{-\frac {20}{5\,x^2+9\,x}}\,{\mathrm {e}}^{\frac {9\,x}{5\,x+9}}}{x}}\,{\mathrm {e}}^{2\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.96, size = 53, normalized size = 1.89 \begin {gather*} e^{\frac {\left (2 x^{2} e^{\frac {- 5 x^{3} - 9 x^{2} + 20}{5 x^{2} + 9 x}} + 1\right ) e^{- \frac {- 5 x^{3} - 9 x^{2} + 20}{5 x^{2} + 9 x}}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________