Optimal. Leaf size=28 \[ 3 e^{-x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}} \]
________________________________________________________________________________________
Rubi [F] time = 11.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-x+\frac {1+e^{4 x} (-2-2 x)+x+e^{8 x} (1+x)}{x^3 \log ^2(5)}\right ) \left (-9-6 x+e^{4 x} \left (18-12 x-24 x^2\right )+e^{8 x} \left (-9+18 x+24 x^2\right )-3 x^4 \log ^2(5)\right )}{x^4 \log ^2(5)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {\exp \left (-x+\frac {1+e^{4 x} (-2-2 x)+x+e^{8 x} (1+x)}{x^3 \log ^2(5)}\right ) \left (-9-6 x+e^{4 x} \left (18-12 x-24 x^2\right )+e^{8 x} \left (-9+18 x+24 x^2\right )-3 x^4 \log ^2(5)\right )}{x^4} \, dx}{\log ^2(5)}\\ &=\frac {\int \left (-\frac {6 \exp \left (3 x+\frac {1+e^{4 x} (-2-2 x)+x+e^{8 x} (1+x)}{x^3 \log ^2(5)}\right ) \left (-3+2 x+4 x^2\right )}{x^4}+\frac {3 \exp \left (7 x+\frac {1+e^{4 x} (-2-2 x)+x+e^{8 x} (1+x)}{x^3 \log ^2(5)}\right ) \left (-3+6 x+8 x^2\right )}{x^4}-\frac {3 \exp \left (-x+\frac {1+e^{4 x} (-2-2 x)+x+e^{8 x} (1+x)}{x^3 \log ^2(5)}\right ) \left (3+2 x+x^4 \log ^2(5)\right )}{x^4}\right ) \, dx}{\log ^2(5)}\\ &=\frac {3 \int \frac {\exp \left (7 x+\frac {1+e^{4 x} (-2-2 x)+x+e^{8 x} (1+x)}{x^3 \log ^2(5)}\right ) \left (-3+6 x+8 x^2\right )}{x^4} \, dx}{\log ^2(5)}-\frac {3 \int \frac {\exp \left (-x+\frac {1+e^{4 x} (-2-2 x)+x+e^{8 x} (1+x)}{x^3 \log ^2(5)}\right ) \left (3+2 x+x^4 \log ^2(5)\right )}{x^4} \, dx}{\log ^2(5)}-\frac {6 \int \frac {\exp \left (3 x+\frac {1+e^{4 x} (-2-2 x)+x+e^{8 x} (1+x)}{x^3 \log ^2(5)}\right ) \left (-3+2 x+4 x^2\right )}{x^4} \, dx}{\log ^2(5)}\\ &=\frac {3 \int \frac {\exp \left (7 x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right ) \left (-3+6 x+8 x^2\right )}{x^4} \, dx}{\log ^2(5)}-\frac {3 \int \frac {\exp \left (-x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right ) \left (3+2 x+x^4 \log ^2(5)\right )}{x^4} \, dx}{\log ^2(5)}-\frac {6 \int \frac {\exp \left (3 x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right ) \left (-3+2 x+4 x^2\right )}{x^4} \, dx}{\log ^2(5)}\\ &=\frac {3 \int \left (-\frac {3 \exp \left (7 x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right )}{x^4}+\frac {6 \exp \left (7 x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right )}{x^3}+\frac {8 \exp \left (7 x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right )}{x^2}\right ) \, dx}{\log ^2(5)}-\frac {3 \int \left (\frac {3 \exp \left (-x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right )}{x^4}+\frac {2 \exp \left (-x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right )}{x^3}+\exp \left (-x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right ) \log ^2(5)\right ) \, dx}{\log ^2(5)}-\frac {6 \int \left (-\frac {3 \exp \left (3 x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right )}{x^4}+\frac {2 \exp \left (3 x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right )}{x^3}+\frac {4 \exp \left (3 x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right )}{x^2}\right ) \, dx}{\log ^2(5)}\\ &=-\left (3 \int \exp \left (-x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right ) \, dx\right )-\frac {6 \int \frac {\exp \left (-x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right )}{x^3} \, dx}{\log ^2(5)}-\frac {9 \int \frac {\exp \left (-x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right )}{x^4} \, dx}{\log ^2(5)}-\frac {9 \int \frac {\exp \left (7 x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right )}{x^4} \, dx}{\log ^2(5)}-\frac {12 \int \frac {\exp \left (3 x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right )}{x^3} \, dx}{\log ^2(5)}+\frac {18 \int \frac {\exp \left (3 x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right )}{x^4} \, dx}{\log ^2(5)}+\frac {18 \int \frac {\exp \left (7 x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right )}{x^3} \, dx}{\log ^2(5)}-\frac {24 \int \frac {\exp \left (3 x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right )}{x^2} \, dx}{\log ^2(5)}+\frac {24 \int \frac {\exp \left (7 x+\frac {\left (-1+e^{4 x}\right )^2 (1+x)}{x^3 \log ^2(5)}\right )}{x^2} \, dx}{\log ^2(5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 43, normalized size = 1.54 \begin {gather*} 3 e^{\frac {1+x-2 e^{4 x} (1+x)+e^{8 x} (1+x)-x^4 \log ^2(5)}{x^3 \log ^2(5)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 43, normalized size = 1.54 \begin {gather*} 3 \, e^{\left (-\frac {x^{4} \log \relax (5)^{2} - {\left (x + 1\right )} e^{\left (8 \, x\right )} + 2 \, {\left (x + 1\right )} e^{\left (4 \, x\right )} - x - 1}{x^{3} \log \relax (5)^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.57, size = 73, normalized size = 2.61 \begin {gather*} 3 \, e^{\left (-x + \frac {e^{\left (8 \, x\right )}}{x^{2} \log \relax (5)^{2}} - \frac {2 \, e^{\left (4 \, x\right )}}{x^{2} \log \relax (5)^{2}} + \frac {1}{x^{2} \log \relax (5)^{2}} + \frac {e^{\left (8 \, x\right )}}{x^{3} \log \relax (5)^{2}} - \frac {2 \, e^{\left (4 \, x\right )}}{x^{3} \log \relax (5)^{2}} + \frac {1}{x^{3} \log \relax (5)^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 52, normalized size = 1.86
method | result | size |
risch | \(3 \,{\mathrm e}^{-\frac {x^{4} \ln \relax (5)^{2}-x \,{\mathrm e}^{8 x}+2 x \,{\mathrm e}^{4 x}-{\mathrm e}^{8 x}+2 \,{\mathrm e}^{4 x}-x -1}{x^{3} \ln \relax (5)^{2}}}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.62, size = 73, normalized size = 2.61 \begin {gather*} 3 \, e^{\left (-x + \frac {e^{\left (8 \, x\right )}}{x^{2} \log \relax (5)^{2}} - \frac {2 \, e^{\left (4 \, x\right )}}{x^{2} \log \relax (5)^{2}} + \frac {1}{x^{2} \log \relax (5)^{2}} + \frac {e^{\left (8 \, x\right )}}{x^{3} \log \relax (5)^{2}} - \frac {2 \, e^{\left (4 \, x\right )}}{x^{3} \log \relax (5)^{2}} + \frac {1}{x^{3} \log \relax (5)^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.54, size = 78, normalized size = 2.79 \begin {gather*} 3\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{\frac {1}{x^2\,{\ln \relax (5)}^2}}\,{\mathrm {e}}^{\frac {1}{x^3\,{\ln \relax (5)}^2}}\,{\mathrm {e}}^{-\frac {2\,{\mathrm {e}}^{4\,x}}{x^2\,{\ln \relax (5)}^2}}\,{\mathrm {e}}^{-\frac {2\,{\mathrm {e}}^{4\,x}}{x^3\,{\ln \relax (5)}^2}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{8\,x}}{x^2\,{\ln \relax (5)}^2}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^{8\,x}}{x^3\,{\ln \relax (5)}^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 37, normalized size = 1.32 \begin {gather*} 3 e^{- x} e^{\frac {x + \left (- 2 x - 2\right ) e^{4 x} + \left (x + 1\right ) e^{8 x} + 1}{x^{3} \log {\relax (5 )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________