Optimal. Leaf size=21 \[ -e^2+\left (4+\frac {1}{9 e^4}+\log (3+x)\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 25, normalized size of antiderivative = 1.19, number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {12, 2390, 2301} \begin {gather*} \frac {\left (9 e^4 \log (x+3)+36 e^4+1\right )^2}{81 e^8} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2301
Rule 2390
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {2+72 e^4+18 e^4 \log (3+x)}{27+9 x} \, dx}{e^4}\\ &=\frac {\operatorname {Subst}\left (\int \frac {2+72 e^4+18 e^4 \log (x)}{9 x} \, dx,x,3+x\right )}{e^4}\\ &=\frac {\operatorname {Subst}\left (\int \frac {2+72 e^4+18 e^4 \log (x)}{x} \, dx,x,3+x\right )}{9 e^4}\\ &=\frac {\left (1+36 e^4+9 e^4 \log (3+x)\right )^2}{81 e^8}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 25, normalized size = 1.19 \begin {gather*} \frac {\left (1+36 e^4+9 e^4 \log (3+x)\right )^2}{81 e^8} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 27, normalized size = 1.29 \begin {gather*} \frac {1}{9} \, {\left (9 \, e^{4} \log \left (x + 3\right )^{2} + 2 \, {\left (36 \, e^{4} + 1\right )} \log \left (x + 3\right )\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.37, size = 29, normalized size = 1.38 \begin {gather*} \frac {1}{9} \, {\left (9 \, e^{4} \log \left (x + 3\right )^{2} + 72 \, e^{4} \log \left (x + 3\right ) + 2 \, \log \left (x + 3\right )\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 26, normalized size = 1.24
method | result | size |
risch | \(\ln \left (3+x \right )^{2}+8 \,{\mathrm e}^{-4} \ln \left (3+x \right ) {\mathrm e}^{4}+\frac {2 \,{\mathrm e}^{-4} \ln \left (3+x \right )}{9}\) | \(26\) |
derivativedivides | \(\frac {2 \,{\mathrm e}^{-4} \left (\frac {9 \ln \left (3+x \right )^{2} {\mathrm e}^{4}}{2}+36 \,{\mathrm e}^{4} \ln \left (3+x \right )+\ln \left (3+x \right )\right )}{9}\) | \(34\) |
default | \(\frac {2 \,{\mathrm e}^{-4} \left (\frac {9 \ln \left (3+x \right )^{2} {\mathrm e}^{4}}{2}+36 \,{\mathrm e}^{4} \ln \left (3+x \right )+\ln \left (3+x \right )\right )}{9}\) | \(34\) |
norman | \(\left (\frac {2 \left (36 \,{\mathrm e}^{4}+1\right ) {\mathrm e}^{-1} \ln \left (3+x \right )}{9}+{\mathrm e}^{3} \ln \left (3+x \right )^{2}\right ) {\mathrm e}^{-3}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.79, size = 20, normalized size = 0.95 \begin {gather*} \frac {1}{81} \, {\left (9 \, e^{4} \log \left (x + 3\right ) + 36 \, e^{4} + 1\right )}^{2} e^{\left (-8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.19, size = 22, normalized size = 1.05 \begin {gather*} \frac {\ln \left (x+3\right )\,{\mathrm {e}}^{-4}\,\left (72\,{\mathrm {e}}^4+9\,\ln \left (x+3\right )\,{\mathrm {e}}^4+2\right )}{9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 31, normalized size = 1.48 \begin {gather*} \log {\left (x + 3 \right )}^{2} + \frac {\left (2 + 72 e^{4}\right ) \log {\left (9 x e^{4} + 27 e^{4} \right )}}{9 e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________