3.103.85 \(\int \frac {e^{e^{\frac {e^x (-1+e^4+20 x)}{5 x}}+x+\frac {e^x (-1+e^4+20 x)}{5 x}} (1+e^4 (-1+x)-x+20 x^2)}{5 x^2} \, dx\)

Optimal. Leaf size=22 \[ e^{e^{e^x \left (4+\frac {-1+e^4}{5 x}\right )}} \]

________________________________________________________________________________________

Rubi [F]  time = 5.97, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (e^{\frac {e^x \left (-1+e^4+20 x\right )}{5 x}}+x+\frac {e^x \left (-1+e^4+20 x\right )}{5 x}\right ) \left (1+e^4 (-1+x)-x+20 x^2\right )}{5 x^2} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(E^(E^((E^x*(-1 + E^4 + 20*x))/(5*x)) + x + (E^x*(-1 + E^4 + 20*x))/(5*x))*(1 + E^4*(-1 + x) - x + 20*x^2)
)/(5*x^2),x]

[Out]

4*Defer[Int][E^(E^((E^x*(-1 + E^4 + 20*x))/(5*x)) + x + (E^x*(-1 + E^4 + 20*x))/(5*x)), x] + ((1 - E^4)*Defer[
Int][E^(E^((E^x*(-1 + E^4 + 20*x))/(5*x)) + x + (E^x*(-1 + E^4 + 20*x))/(5*x))/x^2, x])/5 - ((1 - E^4)*Defer[I
nt][E^(E^((E^x*(-1 + E^4 + 20*x))/(5*x)) + x + (E^x*(-1 + E^4 + 20*x))/(5*x))/x, x])/5

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {\exp \left (e^{\frac {e^x \left (-1+e^4+20 x\right )}{5 x}}+x+\frac {e^x \left (-1+e^4+20 x\right )}{5 x}\right ) \left (1+e^4 (-1+x)-x+20 x^2\right )}{x^2} \, dx\\ &=\frac {1}{5} \int \frac {\exp \left (e^{\frac {e^x \left (-1+e^4+20 x\right )}{5 x}}+x+\frac {e^x \left (-1+e^4+20 x\right )}{5 x}\right ) \left (1-e^4-\left (1-e^4\right ) x+20 x^2\right )}{x^2} \, dx\\ &=\frac {1}{5} \int \left (20 \exp \left (e^{\frac {e^x \left (-1+e^4+20 x\right )}{5 x}}+x+\frac {e^x \left (-1+e^4+20 x\right )}{5 x}\right )+\frac {\exp \left (e^{\frac {e^x \left (-1+e^4+20 x\right )}{5 x}}+x+\frac {e^x \left (-1+e^4+20 x\right )}{5 x}\right ) \left (1-e^4\right )}{x^2}+\frac {\exp \left (e^{\frac {e^x \left (-1+e^4+20 x\right )}{5 x}}+x+\frac {e^x \left (-1+e^4+20 x\right )}{5 x}\right ) \left (-1+e^4\right )}{x}\right ) \, dx\\ &=4 \int \exp \left (e^{\frac {e^x \left (-1+e^4+20 x\right )}{5 x}}+x+\frac {e^x \left (-1+e^4+20 x\right )}{5 x}\right ) \, dx+\frac {1}{5} \left (1-e^4\right ) \int \frac {\exp \left (e^{\frac {e^x \left (-1+e^4+20 x\right )}{5 x}}+x+\frac {e^x \left (-1+e^4+20 x\right )}{5 x}\right )}{x^2} \, dx+\frac {1}{5} \left (-1+e^4\right ) \int \frac {\exp \left (e^{\frac {e^x \left (-1+e^4+20 x\right )}{5 x}}+x+\frac {e^x \left (-1+e^4+20 x\right )}{5 x}\right )}{x} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 4.15, size = 22, normalized size = 1.00 \begin {gather*} e^{e^{\frac {e^x \left (-1+e^4+20 x\right )}{5 x}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^(E^((E^x*(-1 + E^4 + 20*x))/(5*x)) + x + (E^x*(-1 + E^4 + 20*x))/(5*x))*(1 + E^4*(-1 + x) - x + 2
0*x^2))/(5*x^2),x]

[Out]

E^E^((E^x*(-1 + E^4 + 20*x))/(5*x))

________________________________________________________________________________________

fricas [B]  time = 0.55, size = 58, normalized size = 2.64 \begin {gather*} e^{\left (-x - \frac {{\left (20 \, x + e^{4} - 1\right )} e^{x}}{5 \, x} + \frac {5 \, x^{2} + {\left (20 \, x + e^{4} - 1\right )} e^{x} + 5 \, x e^{\left (\frac {{\left (20 \, x + e^{4} - 1\right )} e^{x}}{5 \, x}\right )}}{5 \, x}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*((x-1)*exp(4)+20*x^2-x+1)*exp(x)*exp(1/5*(exp(4)+20*x-1)*exp(x)/x)*exp(exp(1/5*(exp(4)+20*x-1)*e
xp(x)/x))/x^2,x, algorithm="fricas")

[Out]

e^(-x - 1/5*(20*x + e^4 - 1)*e^x/x + 1/5*(5*x^2 + (20*x + e^4 - 1)*e^x + 5*x*e^(1/5*(20*x + e^4 - 1)*e^x/x))/x
)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (20 \, x^{2} + {\left (x - 1\right )} e^{4} - x + 1\right )} e^{\left (x + \frac {{\left (20 \, x + e^{4} - 1\right )} e^{x}}{5 \, x} + e^{\left (\frac {{\left (20 \, x + e^{4} - 1\right )} e^{x}}{5 \, x}\right )}\right )}}{5 \, x^{2}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*((x-1)*exp(4)+20*x^2-x+1)*exp(x)*exp(1/5*(exp(4)+20*x-1)*exp(x)/x)*exp(exp(1/5*(exp(4)+20*x-1)*e
xp(x)/x))/x^2,x, algorithm="giac")

[Out]

integrate(1/5*(20*x^2 + (x - 1)*e^4 - x + 1)*e^(x + 1/5*(20*x + e^4 - 1)*e^x/x + e^(1/5*(20*x + e^4 - 1)*e^x/x
))/x^2, x)

________________________________________________________________________________________

maple [A]  time = 0.15, size = 17, normalized size = 0.77




method result size



norman \({\mathrm e}^{{\mathrm e}^{\frac {\left ({\mathrm e}^{4}+20 x -1\right ) {\mathrm e}^{x}}{5 x}}}\) \(17\)
risch \({\mathrm e}^{{\mathrm e}^{\frac {\left ({\mathrm e}^{4}+20 x -1\right ) {\mathrm e}^{x}}{5 x}}}\) \(17\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/5*((x-1)*exp(4)+20*x^2-x+1)*exp(x)*exp(1/5*(exp(4)+20*x-1)*exp(x)/x)*exp(exp(1/5*(exp(4)+20*x-1)*exp(x)/
x))/x^2,x,method=_RETURNVERBOSE)

[Out]

exp(exp(1/5*(exp(4)+20*x-1)*exp(x)/x))

________________________________________________________________________________________

maxima [A]  time = 0.75, size = 23, normalized size = 1.05 \begin {gather*} e^{\left (e^{\left (\frac {e^{\left (x + 4\right )}}{5 \, x} - \frac {e^{x}}{5 \, x} + 4 \, e^{x}\right )}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*((x-1)*exp(4)+20*x^2-x+1)*exp(x)*exp(1/5*(exp(4)+20*x-1)*exp(x)/x)*exp(exp(1/5*(exp(4)+20*x-1)*e
xp(x)/x))/x^2,x, algorithm="maxima")

[Out]

e^(e^(1/5*e^(x + 4)/x - 1/5*e^x/x + 4*e^x))

________________________________________________________________________________________

mupad [B]  time = 7.55, size = 25, normalized size = 1.14 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{-\frac {{\mathrm {e}}^x}{5\,x}}\,{\mathrm {e}}^{4\,{\mathrm {e}}^x}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^4\,{\mathrm {e}}^x}{5\,x}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp((exp(x)*(20*x + exp(4) - 1))/(5*x))*exp(exp((exp(x)*(20*x + exp(4) - 1))/(5*x)))*exp(x)*(exp(4)*(x -
1) - x + 20*x^2 + 1))/(5*x^2),x)

[Out]

exp(exp(-exp(x)/(5*x))*exp(4*exp(x))*exp((exp(4)*exp(x))/(5*x)))

________________________________________________________________________________________

sympy [A]  time = 1.25, size = 19, normalized size = 0.86 \begin {gather*} e^{e^{\frac {\left (4 x - \frac {1}{5} + \frac {e^{4}}{5}\right ) e^{x}}{x}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*((x-1)*exp(4)+20*x**2-x+1)*exp(x)*exp(1/5*(exp(4)+20*x-1)*exp(x)/x)*exp(exp(1/5*(exp(4)+20*x-1)*
exp(x)/x))/x**2,x)

[Out]

exp(exp((4*x - 1/5 + exp(4)/5)*exp(x)/x))

________________________________________________________________________________________