Optimal. Leaf size=25 \[ \log \left (2 x+\log ^2\left (4 \left (-3-e+e^5-e^x\right )\right )+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.60, antiderivative size = 23, normalized size of antiderivative = 0.92, number of steps used = 4, number of rules used = 3, integrand size = 141, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.021, Rules used = {6, 6688, 6684} \begin {gather*} \log \left (2 x+\log ^2\left (-4 \left (e^x+3+e-e^5\right )\right )+\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 6684
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3+e^5 (-1-2 x)+6 x+e (1+2 x)+e^x (1+2 x)+2 e^x x \log \left (-12-4 e+4 e^5-4 e^x\right )}{-2 e^5 x^2+2 e^x x^2+(6+2 e) x^2+\left (3 x+e x-e^5 x+e^x x\right ) \log ^2\left (-12-4 e+4 e^5-4 e^x\right )+\left (3 x+e x-e^5 x+e^x x\right ) \log (x)} \, dx\\ &=\int \frac {3+e^5 (-1-2 x)+6 x+e (1+2 x)+e^x (1+2 x)+2 e^x x \log \left (-12-4 e+4 e^5-4 e^x\right )}{2 e^x x^2+\left (6+2 e-2 e^5\right ) x^2+\left (3 x+e x-e^5 x+e^x x\right ) \log ^2\left (-12-4 e+4 e^5-4 e^x\right )+\left (3 x+e x-e^5 x+e^x x\right ) \log (x)} \, dx\\ &=\int \frac {\left (3+e-e^5+e^x\right ) (1+2 x)+2 e^x x \log \left (-4 \left (3+e-e^5+e^x\right )\right )}{\left (e^x+3 \left (1-\frac {1}{3} e \left (-1+e^4\right )\right )\right ) x \left (2 x+\log ^2\left (-4 \left (3+e-e^5+e^x\right )\right )+\log (x)\right )} \, dx\\ &=\log \left (2 x+\log ^2\left (-4 \left (3+e-e^5+e^x\right )\right )+\log (x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.28, size = 23, normalized size = 0.92 \begin {gather*} \log \left (2 x+\log ^2\left (-4 \left (3+e-e^5+e^x\right )\right )+\log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 24, normalized size = 0.96 \begin {gather*} \log \left (\log \left (4 \, e^{5} - 4 \, e - 4 \, e^{x} - 12\right )^{2} + 2 \, x + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.49, size = 24, normalized size = 0.96 \begin {gather*} \log \left (\log \left (4 \, e^{5} - 4 \, e - 4 \, e^{x} - 12\right )^{2} + 2 \, x + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 25, normalized size = 1.00
method | result | size |
risch | \(\ln \left (\ln \relax (x )+\ln \left (-4 \,{\mathrm e}^{x}+4 \,{\mathrm e}^{5}-4 \,{\mathrm e}-12\right )^{2}+2 x \right )\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.55, size = 57, normalized size = 2.28 \begin {gather*} \log \left (-\pi ^{2} + 4 i \, \pi \log \relax (2) + 4 \, \log \relax (2)^{2} - 2 \, {\left (-i \, \pi - 2 \, \log \relax (2)\right )} \log \left (-e^{5} + e + e^{x} + 3\right ) + \log \left (-e^{5} + e + e^{x} + 3\right )^{2} + 2 \, x + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.53, size = 24, normalized size = 0.96 \begin {gather*} \ln \left ({\ln \left (4\,{\mathrm {e}}^5-4\,\mathrm {e}-4\,{\mathrm {e}}^x-12\right )}^2+2\,x+\ln \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 3.41, size = 27, normalized size = 1.08 \begin {gather*} \log {\left (2 x + \log {\relax (x )} + \log {\left (- 4 e^{x} - 12 - 4 e + 4 e^{5} \right )}^{2} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________