Optimal. Leaf size=22 \[ \frac {e^x}{4 \left (e^{x^2}+(-142-x)^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.67, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{x+x^2} (1-2 x)+e^x \left (19880+282 x+x^2\right )}{1626347584+4 e^{2 x^2}+45812608 x+483936 x^2+2272 x^3+4 x^4+e^{x^2} \left (161312+2272 x+8 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (19880+e^{x^2} (1-2 x)+282 x+x^2\right )}{4 \left (e^{x^2}+(142+x)^2\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {e^x \left (19880+e^{x^2} (1-2 x)+282 x+x^2\right )}{\left (e^{x^2}+(142+x)^2\right )^2} \, dx\\ &=\frac {1}{4} \int \left (-\frac {e^x (-1+2 x)}{20164+e^{x^2}+284 x+x^2}+\frac {2 e^x \left (-142+20163 x+284 x^2+x^3\right )}{\left (20164+e^{x^2}+284 x+x^2\right )^2}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {e^x (-1+2 x)}{20164+e^{x^2}+284 x+x^2} \, dx\right )+\frac {1}{2} \int \frac {e^x \left (-142+20163 x+284 x^2+x^3\right )}{\left (20164+e^{x^2}+284 x+x^2\right )^2} \, dx\\ &=-\left (\frac {1}{4} \int \left (-\frac {e^x}{20164+e^{x^2}+284 x+x^2}+\frac {2 e^x x}{20164+e^{x^2}+284 x+x^2}\right ) \, dx\right )+\frac {1}{2} \int \left (-\frac {142 e^x}{\left (20164+e^{x^2}+284 x+x^2\right )^2}+\frac {20163 e^x x}{\left (20164+e^{x^2}+284 x+x^2\right )^2}+\frac {284 e^x x^2}{\left (20164+e^{x^2}+284 x+x^2\right )^2}+\frac {e^x x^3}{\left (20164+e^{x^2}+284 x+x^2\right )^2}\right ) \, dx\\ &=\frac {1}{4} \int \frac {e^x}{20164+e^{x^2}+284 x+x^2} \, dx+\frac {1}{2} \int \frac {e^x x^3}{\left (20164+e^{x^2}+284 x+x^2\right )^2} \, dx-\frac {1}{2} \int \frac {e^x x}{20164+e^{x^2}+284 x+x^2} \, dx-71 \int \frac {e^x}{\left (20164+e^{x^2}+284 x+x^2\right )^2} \, dx+142 \int \frac {e^x x^2}{\left (20164+e^{x^2}+284 x+x^2\right )^2} \, dx+\frac {20163}{2} \int \frac {e^x x}{\left (20164+e^{x^2}+284 x+x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.52, size = 22, normalized size = 1.00 \begin {gather*} \frac {e^x}{4 \left (20164+e^{x^2}+284 x+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 30, normalized size = 1.36 \begin {gather*} \frac {e^{\left (x^{2} + x\right )}}{4 \, {\left ({\left (x^{2} + 284 \, x + 20164\right )} e^{\left (x^{2}\right )} + e^{\left (2 \, x^{2}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 18, normalized size = 0.82 \begin {gather*} \frac {e^{x}}{4 \, {\left (x^{2} + 284 \, x + e^{\left (x^{2}\right )} + 20164\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 19, normalized size = 0.86
method | result | size |
norman | \(\frac {{\mathrm e}^{x}}{4 x^{2}+4 \,{\mathrm e}^{x^{2}}+1136 x +80656}\) | \(19\) |
risch | \(\frac {{\mathrm e}^{x}}{4 x^{2}+4 \,{\mathrm e}^{x^{2}}+1136 x +80656}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 18, normalized size = 0.82 \begin {gather*} \frac {e^{x}}{4 \, {\left (x^{2} + 284 \, x + e^{\left (x^{2}\right )} + 20164\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {{\mathrm {e}}^x\,\left (x^2+282\,x+19880\right )-{\mathrm {e}}^{x^2+x}\,\left (2\,x-1\right )}{45812608\,x+4\,{\mathrm {e}}^{2\,x^2}+{\mathrm {e}}^{x^2}\,\left (8\,x^2+2272\,x+161312\right )+483936\,x^2+2272\,x^3+4\,x^4+1626347584} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 19, normalized size = 0.86 \begin {gather*} \frac {e^{x}}{4 x^{2} + 1136 x + 4 e^{x^{2}} + 80656} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________