Optimal. Leaf size=22 \[ \frac {9 e^{5+2 x \left (x+2 e^{4 x} x\right )}}{x^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.62, antiderivative size = 71, normalized size of antiderivative = 3.23, number of steps used = 3, number of rules used = 3, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {6741, 12, 2288} \begin {gather*} \frac {9 e^{2 \left (2 e^{4 x}+1\right ) x^2+5} \left (4 e^{4 x} x^3+2 e^{4 x} x^2+x^2\right )}{x^3 \left (4 e^{4 x} x^2+\left (2 e^{4 x}+1\right ) x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {18 e^{5+2 \left (1+2 e^{4 x}\right ) x^2} \left (-1+2 x^2+4 e^{4 x} x^2+8 e^{4 x} x^3\right )}{x^3} \, dx\\ &=18 \int \frac {e^{5+2 \left (1+2 e^{4 x}\right ) x^2} \left (-1+2 x^2+4 e^{4 x} x^2+8 e^{4 x} x^3\right )}{x^3} \, dx\\ &=\frac {9 e^{5+2 \left (1+2 e^{4 x}\right ) x^2} \left (x^2+2 e^{4 x} x^2+4 e^{4 x} x^3\right )}{x^3 \left (\left (1+2 e^{4 x}\right ) x+4 e^{4 x} x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 22, normalized size = 1.00 \begin {gather*} \frac {9 e^{5+\left (2+4 e^{4 x}\right ) x^2}}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 30, normalized size = 1.36 \begin {gather*} \frac {9 \, e^{\left (2 \, {\left (x^{2} e^{5} + 2 \, x^{2} e^{\left (4 \, x + 5\right )}\right )} e^{\left (-5\right )} + 5\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {18 \, {\left ({\left (2 \, x^{2} - 1\right )} e^{5} + 4 \, {\left (2 \, x^{3} + x^{2}\right )} e^{\left (4 \, x + 5\right )}\right )} e^{\left (4 \, x^{2} e^{\left (4 \, x\right )} + 2 \, x^{2}\right )}}{x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 23, normalized size = 1.05
method | result | size |
risch | \(\frac {9 \,{\mathrm e}^{4 x^{2} {\mathrm e}^{4 x}+2 x^{2}+5}}{x^{2}}\) | \(23\) |
norman | \(\frac {9 \,{\mathrm e}^{5} {\mathrm e}^{4 x^{2} {\mathrm e}^{4 x}+2 x^{2}}}{x^{2}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 22, normalized size = 1.00 \begin {gather*} \frac {9 \, e^{\left (4 \, x^{2} e^{\left (4 \, x\right )} + 2 \, x^{2} + 5\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.19, size = 23, normalized size = 1.05 \begin {gather*} \frac {9\,{\mathrm {e}}^5\,{\mathrm {e}}^{2\,x^2}\,{\mathrm {e}}^{4\,x^2\,{\mathrm {e}}^{4\,x}}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 24, normalized size = 1.09 \begin {gather*} \frac {9 e^{5} e^{4 x^{2} e^{4 x} + 2 x^{2}}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________