Optimal. Leaf size=34 \[ \frac {2 e^{x^2} \left (-e^x+\frac {-e^{e^x}+x}{2 (4+x)}\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 3.63, size = 32, normalized size = 0.94 \begin {gather*} -\frac {e^{x^2} \left (e^{e^x}-x+2 e^x (4+x)\right )}{x (4+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 35, normalized size = 1.03 \begin {gather*} -\frac {{\left (2 \, {\left (x + 4\right )} e^{x} - x\right )} e^{\left (x^{2}\right )} + e^{\left (x^{2} + e^{x}\right )}}{x^{2} + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (2 \, x^{3} + 8 \, x^{2} + {\left (x^{2} + 4 \, x\right )} e^{x} - 2 \, x - 4\right )} e^{\left (x^{2} + e^{x}\right )} - {\left (2 \, x^{4} + 8 \, x^{3} - x^{2} - 2 \, {\left (2 \, x^{4} + 17 \, x^{3} + 39 \, x^{2} + 8 \, x - 16\right )} e^{x}\right )} e^{\left (x^{2}\right )}}{x^{4} + 8 \, x^{3} + 16 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 46, normalized size = 1.35
method | result | size |
risch | \(-\frac {\left (2 \,{\mathrm e}^{x} x -x +8 \,{\mathrm e}^{x}\right ) {\mathrm e}^{x^{2}}}{\left (4+x \right ) x}-\frac {{\mathrm e}^{x^{2}+{\mathrm e}^{x}}}{x \left (4+x \right )}\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 35, normalized size = 1.03 \begin {gather*} -\frac {{\left (2 \, {\left (x + 4\right )} e^{x} - x\right )} e^{\left (x^{2}\right )} + e^{\left (x^{2} + e^{x}\right )}}{x^{2} + 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.42, size = 47, normalized size = 1.38 \begin {gather*} -\frac {{\mathrm {e}}^{{\mathrm {e}}^x+x^2}}{x^2+4\,x}-\frac {{\mathrm {e}}^{x^2}\,\left (8\,{\mathrm {e}}^x-x+2\,x\,{\mathrm {e}}^x\right )}{x^2+4\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 41, normalized size = 1.21 \begin {gather*} \frac {\left (- 2 x e^{x} + x - 8 e^{x}\right ) e^{x^{2}}}{x^{2} + 4 x} - \frac {e^{x^{2}} e^{e^{x}}}{x^{2} + 4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________