Optimal. Leaf size=29 \[ \log \left (e^{-\frac {2 \left (16+\frac {2 \left (x-x^2\right )}{x}\right )}{x}} (x+\log (x))^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.29, antiderivative size = 13, normalized size of antiderivative = 0.45, number of steps used = 6, number of rules used = 5, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {2561, 6741, 12, 6742, 6684} \begin {gather*} 2 \log (x+\log (x))-\frac {36}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2561
Rule 6684
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {38 x+2 x^2+36 \log (x)}{x^2 (x+\log (x))} \, dx\\ &=\int \frac {2 \left (19 x+x^2+18 \log (x)\right )}{x^2 (x+\log (x))} \, dx\\ &=2 \int \frac {19 x+x^2+18 \log (x)}{x^2 (x+\log (x))} \, dx\\ &=2 \int \left (\frac {18}{x^2}+\frac {1+x}{x (x+\log (x))}\right ) \, dx\\ &=-\frac {36}{x}+2 \int \frac {1+x}{x (x+\log (x))} \, dx\\ &=-\frac {36}{x}+2 \log (x+\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 13, normalized size = 0.45 \begin {gather*} -\frac {36}{x}+2 \log (x+\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 14, normalized size = 0.48 \begin {gather*} \frac {2 \, {\left (x \log \left (x + \log \relax (x)\right ) - 18\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 13, normalized size = 0.45 \begin {gather*} -\frac {36}{x} + 2 \, \log \left (x + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 14, normalized size = 0.48
method | result | size |
norman | \(-\frac {36}{x}+2 \ln \left (x +\ln \relax (x )\right )\) | \(14\) |
risch | \(-\frac {36}{x}+2 \ln \left (x +\ln \relax (x )\right )\) | \(14\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 13, normalized size = 0.45 \begin {gather*} -\frac {36}{x} + 2 \, \log \left (x + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.96, size = 13, normalized size = 0.45 \begin {gather*} 2\,\ln \left (x+\ln \relax (x)\right )-\frac {36}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 10, normalized size = 0.34 \begin {gather*} 2 \log {\left (x + \log {\relax (x )} \right )} - \frac {36}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________