Optimal. Leaf size=24 \[ 4-\frac {e^{-3+x}}{-7+e-\frac {26}{3} (-25+x)}-x \]
________________________________________________________________________________________
Rubi [B] time = 0.41, antiderivative size = 144, normalized size of antiderivative = 6.00, number of steps used = 11, number of rules used = 5, integrand size = 61, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.082, Rules used = {6741, 27, 6742, 2197, 43} \begin {gather*} -x-\frac {3 e^{x-3}}{-26 x+3 e+629}-\frac {395641+9 e^2}{26 (-26 x+3 e+629)}-\frac {(629+3 e)^2}{26 (-26 x+3 e+629)}+\frac {629 (629+3 e)}{13 (-26 x+3 e+629)}+\frac {9 e^2}{13 (-26 x+3 e+629)}-\frac {1}{13} (629+3 e) \log (-26 x+3 e+629)+\frac {3}{13} e \log (-26 x+3 e+629)+\frac {629}{13} \log (-26 x+3 e+629) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 43
Rule 2197
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-395641 \left (1+\frac {9 e^2}{395641}\right )+32708 x-676 x^2+e^{-3+x} (-1965-9 e+78 x)+e (-3774+156 x)}{(629+3 e)^2-52 (629+3 e) x+676 x^2} \, dx\\ &=\int \frac {-395641 \left (1+\frac {9 e^2}{395641}\right )+32708 x-676 x^2+e^{-3+x} (-1965-9 e+78 x)+e (-3774+156 x)}{(629+3 e-26 x)^2} \, dx\\ &=\int \left (\frac {-395641-9 e^2}{(629+3 e-26 x)^2}-\frac {3 e^{-3+x} (655+3 e-26 x)}{(629+3 e-26 x)^2}+\frac {32708 x}{(629+3 e-26 x)^2}-\frac {676 x^2}{(629+3 e-26 x)^2}+\frac {6 e (-629+26 x)}{(629+3 e-26 x)^2}\right ) \, dx\\ &=-\frac {395641+9 e^2}{26 (629+3 e-26 x)}-3 \int \frac {e^{-3+x} (655+3 e-26 x)}{(629+3 e-26 x)^2} \, dx-676 \int \frac {x^2}{(629+3 e-26 x)^2} \, dx+32708 \int \frac {x}{(629+3 e-26 x)^2} \, dx+(6 e) \int \frac {-629+26 x}{(629+3 e-26 x)^2} \, dx\\ &=-\frac {3 e^{-3+x}}{629+3 e-26 x}-\frac {395641+9 e^2}{26 (629+3 e-26 x)}-676 \int \left (\frac {1}{676}+\frac {(629+3 e)^2}{676 (629+3 e-26 x)^2}+\frac {-629-3 e}{338 (629+3 e-26 x)}\right ) \, dx+32708 \int \left (\frac {629+3 e}{26 (629+3 e-26 x)^2}-\frac {1}{26 (629+3 e-26 x)}\right ) \, dx+(6 e) \int \left (\frac {3 e}{(629+3 e-26 x)^2}+\frac {1}{-629-3 e+26 x}\right ) \, dx\\ &=\frac {9 e^2}{13 (629+3 e-26 x)}-\frac {3 e^{-3+x}}{629+3 e-26 x}+\frac {629 (629+3 e)}{13 (629+3 e-26 x)}-\frac {(629+3 e)^2}{26 (629+3 e-26 x)}-\frac {395641+9 e^2}{26 (629+3 e-26 x)}-x+\frac {629}{13} \log (629+3 e-26 x)+\frac {3}{13} e \log (629+3 e-26 x)-\frac {1}{13} (629+3 e) \log (629+3 e-26 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 26, normalized size = 1.08 \begin {gather*} \frac {-\frac {3 e^x}{629+3 e-26 x}-e^3 x}{e^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.10, size = 33, normalized size = 1.38 \begin {gather*} -\frac {26 \, x^{2} - 3 \, x e - 629 \, x - 3 \, e^{\left (x - 3\right )}}{26 \, x - 3 \, e - 629} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 40, normalized size = 1.67 \begin {gather*} -\frac {26 \, x^{2} e^{3} - 3 \, x e^{4} - 629 \, x e^{3} - 3 \, e^{x}}{26 \, x e^{3} - 3 \, e^{4} - 629 \, e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.27, size = 36, normalized size = 1.50
method | result | size |
norman | \(\frac {26 x^{2}-3 \,{\mathrm e}^{x -3}-\frac {395641}{26}-\frac {9 \,{\mathrm e}^{2}}{26}-\frac {1887 \,{\mathrm e}}{13}}{3 \,{\mathrm e}-26 x +629}\) | \(36\) |
derivativedivides | \(\frac {303601}{26 \left (3 \,{\mathrm e}-26 x +629\right )}+\frac {26 \left (x -3\right )^{2}-\frac {9 \,{\mathrm e}^{2}}{13}-\frac {3306 \,{\mathrm e}}{13}-\frac {303601}{13}}{3 \,{\mathrm e}-26 x +629}+\frac {9 \,{\mathrm e}^{2}}{26 \left (3 \,{\mathrm e}-26 x +629\right )}-\frac {1731 \,{\mathrm e}^{x -3}}{26 \left (3 \,{\mathrm e}-26 x +629\right )}+\frac {1731 \,{\mathrm e}^{\frac {3 \,{\mathrm e}}{26}+\frac {551}{26}} \expIntegralEi \left (1, \frac {629}{26}+\frac {3 \,{\mathrm e}}{26}-x \right )}{676}+\frac {1653 \,{\mathrm e}}{13 \left (3 \,{\mathrm e}-26 x +629\right )}+\frac {3 \,{\mathrm e}^{x -3} \left (3 \,{\mathrm e}+551\right )}{26 \left (3 \,{\mathrm e}-26 x +629\right )}-78 \left (\frac {3 \,{\mathrm e}}{17576}+\frac {577}{17576}\right ) {\mathrm e}^{\frac {3 \,{\mathrm e}}{26}+\frac {551}{26}} \expIntegralEi \left (1, \frac {629}{26}+\frac {3 \,{\mathrm e}}{26}-x \right )-9 \,{\mathrm e} \left (\frac {{\mathrm e}^{x -3}}{78 \,{\mathrm e}-676 x +16354}-\frac {{\mathrm e}^{\frac {3 \,{\mathrm e}}{26}+\frac {551}{26}} \expIntegralEi \left (1, \frac {629}{26}+\frac {3 \,{\mathrm e}}{26}-x \right )}{676}\right )\) | \(206\) |
default | \(\frac {303601}{26 \left (3 \,{\mathrm e}-26 x +629\right )}+\frac {26 \left (x -3\right )^{2}-\frac {9 \,{\mathrm e}^{2}}{13}-\frac {3306 \,{\mathrm e}}{13}-\frac {303601}{13}}{3 \,{\mathrm e}-26 x +629}+\frac {9 \,{\mathrm e}^{2}}{26 \left (3 \,{\mathrm e}-26 x +629\right )}-\frac {1731 \,{\mathrm e}^{x -3}}{26 \left (3 \,{\mathrm e}-26 x +629\right )}+\frac {1731 \,{\mathrm e}^{\frac {3 \,{\mathrm e}}{26}+\frac {551}{26}} \expIntegralEi \left (1, \frac {629}{26}+\frac {3 \,{\mathrm e}}{26}-x \right )}{676}+\frac {1653 \,{\mathrm e}}{13 \left (3 \,{\mathrm e}-26 x +629\right )}+\frac {3 \,{\mathrm e}^{x -3} \left (3 \,{\mathrm e}+551\right )}{26 \left (3 \,{\mathrm e}-26 x +629\right )}-78 \left (\frac {3 \,{\mathrm e}}{17576}+\frac {577}{17576}\right ) {\mathrm e}^{\frac {3 \,{\mathrm e}}{26}+\frac {551}{26}} \expIntegralEi \left (1, \frac {629}{26}+\frac {3 \,{\mathrm e}}{26}-x \right )-9 \,{\mathrm e} \left (\frac {{\mathrm e}^{x -3}}{78 \,{\mathrm e}-676 x +16354}-\frac {{\mathrm e}^{\frac {3 \,{\mathrm e}}{26}+\frac {551}{26}} \expIntegralEi \left (1, \frac {629}{26}+\frac {3 \,{\mathrm e}}{26}-x \right )}{676}\right )\) | \(206\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {3}{13} \, {\left (\frac {3 \, e + 629}{26 \, x - 3 \, e - 629} - \log \left (26 \, x - 3 \, e - 629\right )\right )} e - \frac {1}{13} \, {\left (3 \, e + 629\right )} \log \left (26 \, x - 3 \, e - 629\right ) - x + \frac {78 \, x e^{x}}{676 \, x^{2} e^{3} - 52 \, x {\left (3 \, e^{4} + 629 \, e^{3}\right )} + 9 \, e^{5} + 3774 \, e^{4} + 395641 \, e^{3}} + \frac {1965 \, e^{\left (\frac {3}{26} \, e + \frac {551}{26}\right )} E_{2}\left (-x + \frac {3}{26} \, e + \frac {629}{26}\right )}{26 \, {\left (26 \, x - 3 \, e - 629\right )}} + \frac {9 \, e^{2} + 3774 \, e + 395641}{26 \, {\left (26 \, x - 3 \, e - 629\right )}} - \frac {629 \, {\left (3 \, e + 629\right )}}{13 \, {\left (26 \, x - 3 \, e - 629\right )}} + \frac {9 \, e^{2}}{26 \, {\left (26 \, x - 3 \, e - 629\right )}} + \frac {1887 \, e}{13 \, {\left (26 \, x - 3 \, e - 629\right )}} + \frac {395641}{26 \, {\left (26 \, x - 3 \, e - 629\right )}} - \int \frac {3 \, {\left (26 \, x {\left (3 \, e - 26\right )} - 9 \, e^{2} - 1965 \, e - 16354\right )} e^{x}}{17576 \, x^{3} e^{3} - 2028 \, x^{2} {\left (3 \, e^{4} + 629 \, e^{3}\right )} + 78 \, x {\left (9 \, e^{5} + 3774 \, e^{4} + 395641 \, e^{3}\right )} - 27 \, e^{6} - 16983 \, e^{5} - 3560769 \, e^{4} - 248858189 \, e^{3}}\,{d x} + \frac {629}{13} \, \log \left (26 \, x - 3 \, e - 629\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.01, size = 21, normalized size = 0.88 \begin {gather*} -x-\frac {3\,{\mathrm {e}}^{-3}\,{\mathrm {e}}^x}{3\,\mathrm {e}-26\,x+629} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 17, normalized size = 0.71 \begin {gather*} - x + \frac {3 e^{x - 3}}{26 x - 629 - 3 e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________