Optimal. Leaf size=28 \[ 4+\frac {75}{e^4+e^x-x^2}-\log (4)-\log \left (\frac {1}{x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.80, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^8+e^{2 x}+150 x^2-2 e^4 x^2+x^4+e^x \left (2 e^4-75 x-2 x^2\right )}{e^8 x+e^{2 x} x-2 e^4 x^3+x^5+e^x \left (2 e^4 x-2 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^8+e^{2 x}+\left (150-2 e^4\right ) x^2+x^4+e^x \left (2 e^4-75 x-2 x^2\right )}{e^8 x+e^{2 x} x-2 e^4 x^3+x^5+e^x \left (2 e^4 x-2 x^3\right )} \, dx\\ &=\int \frac {e^8+e^{2 x}+2 e^{4+x}-2 e^4 x^2-e^x x (75+2 x)+x^2 \left (150+x^2\right )}{x \left (e^4+e^x-x^2\right )^2} \, dx\\ &=\int \left (\frac {1}{x}-\frac {75}{e^4+e^x-x^2}+\frac {75 \left (e^4+2 x-x^2\right )}{\left (e^4+e^x-x^2\right )^2}\right ) \, dx\\ &=\log (x)-75 \int \frac {1}{e^4+e^x-x^2} \, dx+75 \int \frac {e^4+2 x-x^2}{\left (e^4+e^x-x^2\right )^2} \, dx\\ &=\log (x)-75 \int \frac {1}{e^4+e^x-x^2} \, dx+75 \int \left (\frac {e^4}{\left (e^4+e^x-x^2\right )^2}+\frac {2 x}{\left (-e^4-e^x+x^2\right )^2}-\frac {x^2}{\left (-e^4-e^x+x^2\right )^2}\right ) \, dx\\ &=\log (x)-75 \int \frac {1}{e^4+e^x-x^2} \, dx-75 \int \frac {x^2}{\left (-e^4-e^x+x^2\right )^2} \, dx+150 \int \frac {x}{\left (-e^4-e^x+x^2\right )^2} \, dx+\left (75 e^4\right ) \int \frac {1}{\left (e^4+e^x-x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 19, normalized size = 0.68 \begin {gather*} \frac {75}{e^4+e^x-x^2}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 32, normalized size = 1.14 \begin {gather*} \frac {{\left (x^{2} - e^{4} - e^{x}\right )} \log \relax (x) - 75}{x^{2} - e^{4} - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 35, normalized size = 1.25 \begin {gather*} \frac {x^{2} \log \relax (x) - e^{4} \log \relax (x) - e^{x} \log \relax (x) - 75}{x^{2} - e^{4} - e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 18, normalized size = 0.64
method | result | size |
norman | \(\frac {75}{-x^{2}+{\mathrm e}^{4}+{\mathrm e}^{x}}+\ln \relax (x )\) | \(18\) |
risch | \(\frac {75}{-x^{2}+{\mathrm e}^{4}+{\mathrm e}^{x}}+\ln \relax (x )\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 19, normalized size = 0.68 \begin {gather*} -\frac {75}{x^{2} - e^{4} - e^{x}} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.55, size = 17, normalized size = 0.61 \begin {gather*} \ln \relax (x)+\frac {75}{{\mathrm {e}}^4+{\mathrm {e}}^x-x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 14, normalized size = 0.50 \begin {gather*} \log {\relax (x )} + \frac {75}{- x^{2} + e^{x} + e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________