Optimal. Leaf size=17 \[ x+\frac {5}{\log (x)}-\frac {4}{x \log (x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.29, antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {6742, 2353, 2306, 2309, 2178, 2302, 30} \begin {gather*} x+\frac {5}{\log (x)}-\frac {4}{x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 30
Rule 2178
Rule 2302
Rule 2306
Rule 2309
Rule 2353
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {4-5 x}{x^2 \log ^2(x)}+\frac {4}{x^2 \log (x)}\right ) \, dx\\ &=x+4 \int \frac {1}{x^2 \log (x)} \, dx+\int \frac {4-5 x}{x^2 \log ^2(x)} \, dx\\ &=x+4 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )+\int \left (\frac {4}{x^2 \log ^2(x)}-\frac {5}{x \log ^2(x)}\right ) \, dx\\ &=x+4 \text {Ei}(-\log (x))+4 \int \frac {1}{x^2 \log ^2(x)} \, dx-5 \int \frac {1}{x \log ^2(x)} \, dx\\ &=x+4 \text {Ei}(-\log (x))-\frac {4}{x \log (x)}-4 \int \frac {1}{x^2 \log (x)} \, dx-5 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log (x)\right )\\ &=x+4 \text {Ei}(-\log (x))+\frac {5}{\log (x)}-\frac {4}{x \log (x)}-4 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )\\ &=x+\frac {5}{\log (x)}-\frac {4}{x \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 17, normalized size = 1.00 \begin {gather*} x+\frac {5}{\log (x)}-\frac {4}{x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 19, normalized size = 1.12 \begin {gather*} \frac {x^{2} \log \relax (x) + 5 \, x - 4}{x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.35, size = 15, normalized size = 0.88 \begin {gather*} x + \frac {5 \, x - 4}{x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 16, normalized size = 0.94
method | result | size |
risch | \(x +\frac {5 x -4}{x \ln \relax (x )}\) | \(16\) |
default | \(x -\frac {4}{x \ln \relax (x )}+\frac {5}{\ln \relax (x )}\) | \(18\) |
norman | \(\frac {-4+x^{2} \ln \relax (x )+5 x}{x \ln \relax (x )}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.59, size = 21, normalized size = 1.24 \begin {gather*} x + \frac {5}{\log \relax (x)} + 4 \, {\rm Ei}\left (-\log \relax (x)\right ) - 4 \, \Gamma \left (-1, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.72, size = 15, normalized size = 0.88 \begin {gather*} x+\frac {5\,x-4}{x\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 10, normalized size = 0.59 \begin {gather*} x + \frac {5 x - 4}{x \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________