Optimal. Leaf size=29 \[ e^{25 e \left (-\log \left (x^2\right )+\frac {1}{3} \log \left (\log \left (\frac {4-x}{4}\right )\right )\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 4.06, antiderivative size = 27, normalized size of antiderivative = 0.93, number of steps used = 4, number of rules used = 4, integrand size = 136, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {1593, 6741, 12, 6706} \begin {gather*} e^{\frac {25}{9} e \left (3 \log \left (x^2\right )-\log \left (\log \left (1-\frac {x}{4}\right )\right )\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 6706
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {1}{9} \left (225 e \log ^2\left (x^2\right )-150 e \log \left (x^2\right ) \log \left (\log \left (\frac {4-x}{4}\right )\right )+25 e \log ^2\left (\log \left (\frac {4-x}{4}\right )\right )\right )\right ) \left (\left (-150 e x+e (-3600+900 x) \log \left (\frac {4-x}{4}\right )\right ) \log \left (x^2\right )+\left (50 e x+e (1200-300 x) \log \left (\frac {4-x}{4}\right )\right ) \log \left (\log \left (\frac {4-x}{4}\right )\right )\right )}{x (-36+9 x) \log \left (\frac {4-x}{4}\right )} \, dx\\ &=\int \frac {50 e^{1+\frac {25}{9} e \left (3 \log \left (x^2\right )-\log \left (\log \left (1-\frac {x}{4}\right )\right )\right )^2} \left (x+24 \log \left (1-\frac {x}{4}\right )-6 x \log \left (1-\frac {x}{4}\right )\right ) \left (3 \log \left (x^2\right )-\log \left (\log \left (1-\frac {x}{4}\right )\right )\right )}{(36-9 x) x \log \left (1-\frac {x}{4}\right )} \, dx\\ &=50 \int \frac {e^{1+\frac {25}{9} e \left (3 \log \left (x^2\right )-\log \left (\log \left (1-\frac {x}{4}\right )\right )\right )^2} \left (x+24 \log \left (1-\frac {x}{4}\right )-6 x \log \left (1-\frac {x}{4}\right )\right ) \left (3 \log \left (x^2\right )-\log \left (\log \left (1-\frac {x}{4}\right )\right )\right )}{(36-9 x) x \log \left (1-\frac {x}{4}\right )} \, dx\\ &=e^{\frac {25}{9} e \left (3 \log \left (x^2\right )-\log \left (\log \left (1-\frac {x}{4}\right )\right )\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 25, normalized size = 0.86 \begin {gather*} e^{\frac {25}{9} e \left (-3 \log \left (x^2\right )+\log \left (\log \left (1-\frac {x}{4}\right )\right )\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 40, normalized size = 1.38 \begin {gather*} e^{\left (25 \, e \log \left (x^{2}\right )^{2} - \frac {50}{3} \, e \log \left (x^{2}\right ) \log \left (\log \left (-\frac {1}{4} \, x + 1\right )\right ) + \frac {25}{9} \, e \log \left (\log \left (-\frac {1}{4} \, x + 1\right )\right )^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 9.01, size = 40, normalized size = 1.38 \begin {gather*} e^{\left (25 \, e \log \left (x^{2}\right )^{2} - \frac {50}{3} \, e \log \left (x^{2}\right ) \log \left (\log \left (-\frac {1}{4} \, x + 1\right )\right ) + \frac {25}{9} \, e \log \left (\log \left (-\frac {1}{4} \, x + 1\right )\right )^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.25, size = 187, normalized size = 6.45
method | result | size |
risch | \(\ln \left (-\frac {x}{4}+1\right )^{-\frac {50 \,{\mathrm e} \left (-i \pi \,\mathrm {csgn}\left (i x^{2}\right )+i \pi \,\mathrm {csgn}\left (i x \right )+2 \ln \relax (x )\right )}{3}} x^{-100 i \pi \,{\mathrm e} \,\mathrm {csgn}\left (i x^{2}\right )} x^{100 i \pi \,{\mathrm e} \,\mathrm {csgn}\left (i x \right )} {\mathrm e}^{\frac {25 \,{\mathrm e} \left (-9 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}+36 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{5} \mathrm {csgn}\left (i x \right )-54 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{4} \mathrm {csgn}\left (i x \right )^{2}+36 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{3} \mathrm {csgn}\left (i x \right )^{3}-9 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )^{4}+144 \ln \relax (x )^{2}+4 \ln \left (\ln \left (-\frac {x}{4}+1\right )\right )^{2}\right )}{36}}\) | \(187\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.90, size = 46, normalized size = 1.59 \begin {gather*} e^{\left (100 \, e \log \relax (x)^{2} - \frac {100}{3} \, e \log \relax (x) \log \left (-2 \, \log \relax (2) + \log \left (-x + 4\right )\right ) + \frac {25}{9} \, e \log \left (-2 \, \log \relax (2) + \log \left (-x + 4\right )\right )^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.58, size = 42, normalized size = 1.45 \begin {gather*} {\mathrm {e}}^{-\frac {50\,\ln \left (\ln \left (1-\frac {x}{4}\right )\right )\,\ln \left (x^2\right )\,\mathrm {e}}{3}}\,{\mathrm {e}}^{\frac {25\,{\ln \left (\ln \left (1-\frac {x}{4}\right )\right )}^2\,\mathrm {e}}{9}}\,{\mathrm {e}}^{25\,{\ln \left (x^2\right )}^2\,\mathrm {e}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 3.08, size = 49, normalized size = 1.69 \begin {gather*} e^{25 e \log {\left (x^{2} \right )}^{2} - \frac {50 e \log {\left (x^{2} \right )} \log {\left (\log {\left (1 - \frac {x}{4} \right )} \right )}}{3} + \frac {25 e \log {\left (\log {\left (1 - \frac {x}{4} \right )} \right )}^{2}}{9}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________