Optimal. Leaf size=23 \[ \frac {3 \left (e^{14 x/5}+\log (8+x)\right )}{(3+x) \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 4.64, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{14 x/5} \left (-360-165 x-15 x^2\right )+\left (45 x+15 x^2+e^{14 x/5} \left (888 x+447 x^2+42 x^3\right )\right ) \log (x)+\left (-360-165 x-15 x^2+\left (-120 x-15 x^2\right ) \log (x)\right ) \log (8+x)}{\left (360 x+285 x^2+70 x^3+5 x^4\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{14 x/5} \left (-360-165 x-15 x^2\right )+\left (45 x+15 x^2+e^{14 x/5} \left (888 x+447 x^2+42 x^3\right )\right ) \log (x)+\left (-360-165 x-15 x^2+\left (-120 x-15 x^2\right ) \log (x)\right ) \log (8+x)}{x \left (360+285 x+70 x^2+5 x^3\right ) \log ^2(x)} \, dx\\ &=\int \left (\frac {9}{(3+x)^2 (8+x) \log (x)}+\frac {3 x}{(3+x)^2 (8+x) \log (x)}+\frac {3 e^{14 x/5} \left (-15-5 x+37 x \log (x)+14 x^2 \log (x)\right )}{5 x (3+x)^2 \log ^2(x)}-\frac {3 (3+x+x \log (x)) \log (8+x)}{x (3+x)^2 \log ^2(x)}\right ) \, dx\\ &=\frac {3}{5} \int \frac {e^{14 x/5} \left (-15-5 x+37 x \log (x)+14 x^2 \log (x)\right )}{x (3+x)^2 \log ^2(x)} \, dx+3 \int \frac {x}{(3+x)^2 (8+x) \log (x)} \, dx-3 \int \frac {(3+x+x \log (x)) \log (8+x)}{x (3+x)^2 \log ^2(x)} \, dx+9 \int \frac {1}{(3+x)^2 (8+x) \log (x)} \, dx\\ &=\frac {3}{5} \int \left (-\frac {5 e^{14 x/5}}{x (3+x) \log ^2(x)}+\frac {e^{14 x/5} (37+14 x)}{(3+x)^2 \log (x)}\right ) \, dx+3 \int \frac {x}{(3+x)^2 (8+x) \log (x)} \, dx-3 \int \left (\frac {(3+x+x \log (x)) \log (8+x)}{9 x \log ^2(x)}-\frac {(3+x+x \log (x)) \log (8+x)}{3 (3+x)^2 \log ^2(x)}-\frac {(3+x+x \log (x)) \log (8+x)}{9 (3+x) \log ^2(x)}\right ) \, dx+9 \int \frac {1}{(3+x)^2 (8+x) \log (x)} \, dx\\ &=-\left (\frac {1}{3} \int \frac {(3+x+x \log (x)) \log (8+x)}{x \log ^2(x)} \, dx\right )+\frac {1}{3} \int \frac {(3+x+x \log (x)) \log (8+x)}{(3+x) \log ^2(x)} \, dx+\frac {3}{5} \int \frac {e^{14 x/5} (37+14 x)}{(3+x)^2 \log (x)} \, dx-3 \int \frac {e^{14 x/5}}{x (3+x) \log ^2(x)} \, dx+3 \int \frac {x}{(3+x)^2 (8+x) \log (x)} \, dx+9 \int \frac {1}{(3+x)^2 (8+x) \log (x)} \, dx+\int \frac {(3+x+x \log (x)) \log (8+x)}{(3+x)^2 \log ^2(x)} \, dx\\ &=-\left (\frac {1}{3} \int \left (\frac {\log (8+x)}{\log ^2(x)}+\frac {3 \log (8+x)}{x \log ^2(x)}+\frac {\log (8+x)}{\log (x)}\right ) \, dx\right )+\frac {1}{3} \int \left (\frac {3 \log (8+x)}{(3+x) \log ^2(x)}+\frac {x \log (8+x)}{(3+x) \log ^2(x)}+\frac {x \log (8+x)}{(3+x) \log (x)}\right ) \, dx+\frac {3}{5} \int \left (-\frac {5 e^{14 x/5}}{(3+x)^2 \log (x)}+\frac {14 e^{14 x/5}}{(3+x) \log (x)}\right ) \, dx-3 \int \left (\frac {e^{14 x/5}}{3 x \log ^2(x)}-\frac {e^{14 x/5}}{3 (3+x) \log ^2(x)}\right ) \, dx+3 \int \frac {x}{(3+x)^2 (8+x) \log (x)} \, dx+9 \int \frac {1}{(3+x)^2 (8+x) \log (x)} \, dx+\int \left (\frac {3 \log (8+x)}{(3+x)^2 \log ^2(x)}+\frac {x \log (8+x)}{(3+x)^2 \log ^2(x)}+\frac {x \log (8+x)}{(3+x)^2 \log (x)}\right ) \, dx\\ &=-\left (\frac {1}{3} \int \frac {\log (8+x)}{\log ^2(x)} \, dx\right )+\frac {1}{3} \int \frac {x \log (8+x)}{(3+x) \log ^2(x)} \, dx-\frac {1}{3} \int \frac {\log (8+x)}{\log (x)} \, dx+\frac {1}{3} \int \frac {x \log (8+x)}{(3+x) \log (x)} \, dx-3 \int \frac {e^{14 x/5}}{(3+x)^2 \log (x)} \, dx+3 \int \frac {x}{(3+x)^2 (8+x) \log (x)} \, dx+3 \int \frac {\log (8+x)}{(3+x)^2 \log ^2(x)} \, dx+\frac {42}{5} \int \frac {e^{14 x/5}}{(3+x) \log (x)} \, dx+9 \int \frac {1}{(3+x)^2 (8+x) \log (x)} \, dx-\int \frac {e^{14 x/5}}{x \log ^2(x)} \, dx+\int \frac {e^{14 x/5}}{(3+x) \log ^2(x)} \, dx-\int \frac {\log (8+x)}{x \log ^2(x)} \, dx+\int \frac {x \log (8+x)}{(3+x)^2 \log ^2(x)} \, dx+\int \frac {\log (8+x)}{(3+x) \log ^2(x)} \, dx+\int \frac {x \log (8+x)}{(3+x)^2 \log (x)} \, dx\\ &=-\left (\frac {1}{3} \int \frac {\log (8+x)}{\log ^2(x)} \, dx\right )-\frac {1}{3} \int \frac {\log (8+x)}{\log (x)} \, dx+\frac {1}{3} \int \left (\frac {\log (8+x)}{\log ^2(x)}-\frac {3 \log (8+x)}{(3+x) \log ^2(x)}\right ) \, dx+\frac {1}{3} \int \left (\frac {\log (8+x)}{\log (x)}-\frac {3 \log (8+x)}{(3+x) \log (x)}\right ) \, dx-3 \int \frac {e^{14 x/5}}{(3+x)^2 \log (x)} \, dx+3 \int \frac {x}{(3+x)^2 (8+x) \log (x)} \, dx+3 \int \frac {\log (8+x)}{(3+x)^2 \log ^2(x)} \, dx+\frac {42}{5} \int \frac {e^{14 x/5}}{(3+x) \log (x)} \, dx+9 \int \frac {1}{(3+x)^2 (8+x) \log (x)} \, dx-\int \frac {e^{14 x/5}}{x \log ^2(x)} \, dx+\int \frac {e^{14 x/5}}{(3+x) \log ^2(x)} \, dx-\int \frac {\log (8+x)}{x \log ^2(x)} \, dx+\int \frac {\log (8+x)}{(3+x) \log ^2(x)} \, dx+\int \left (-\frac {3 \log (8+x)}{(3+x)^2 \log ^2(x)}+\frac {\log (8+x)}{(3+x) \log ^2(x)}\right ) \, dx+\int \left (-\frac {3 \log (8+x)}{(3+x)^2 \log (x)}+\frac {\log (8+x)}{(3+x) \log (x)}\right ) \, dx\\ &=-\left (3 \int \frac {e^{14 x/5}}{(3+x)^2 \log (x)} \, dx\right )+3 \int \frac {x}{(3+x)^2 (8+x) \log (x)} \, dx-3 \int \frac {\log (8+x)}{(3+x)^2 \log (x)} \, dx+\frac {42}{5} \int \frac {e^{14 x/5}}{(3+x) \log (x)} \, dx+9 \int \frac {1}{(3+x)^2 (8+x) \log (x)} \, dx-\int \frac {e^{14 x/5}}{x \log ^2(x)} \, dx+\int \frac {e^{14 x/5}}{(3+x) \log ^2(x)} \, dx-\int \frac {\log (8+x)}{x \log ^2(x)} \, dx+\int \frac {\log (8+x)}{(3+x) \log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.51, size = 23, normalized size = 1.00 \begin {gather*} \frac {3 \left (e^{14 x/5}+\log (8+x)\right )}{(3+x) \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 20, normalized size = 0.87 \begin {gather*} \frac {3 \, {\left (e^{\left (\frac {14}{5} \, x\right )} + \log \left (x + 8\right )\right )}}{{\left (x + 3\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.42, size = 22, normalized size = 0.96 \begin {gather*} \frac {3 \, {\left (e^{\left (\frac {14}{5} \, x\right )} + \log \left (x + 8\right )\right )}}{x \log \relax (x) + 3 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 32, normalized size = 1.39
method | result | size |
risch | \(\frac {3 \ln \left (x +8\right )}{\left (3+x \right ) \ln \relax (x )}+\frac {3 \,{\mathrm e}^{\frac {14 x}{5}}}{\left (3+x \right ) \ln \relax (x )}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.71, size = 20, normalized size = 0.87 \begin {gather*} \frac {3 \, {\left (e^{\left (\frac {14}{5} \, x\right )} + \log \left (x + 8\right )\right )}}{{\left (x + 3\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.70, size = 20, normalized size = 0.87 \begin {gather*} \frac {3\,\left ({\mathrm {e}}^{\frac {14\,x}{5}}+\ln \left (x+8\right )\right )}{\ln \relax (x)\,\left (x+3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.61, size = 34, normalized size = 1.48 \begin {gather*} \frac {3 e^{\frac {14 x}{5}}}{x \log {\relax (x )} + 3 \log {\relax (x )}} + \frac {3 \log {\left (x + 8 \right )}}{x \log {\relax (x )} + 3 \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________