Optimal. Leaf size=25 \[ \frac {2 \left (-x+e^{-x} \log (5)\right )}{x+\frac {1}{2} x \log (x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.63, antiderivative size = 35, normalized size of antiderivative = 1.40, number of steps used = 6, number of rules used = 5, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.102, Rules used = {6741, 6742, 2302, 30, 2288} \begin {gather*} \frac {4 e^{-x} \log (5) (2 x+x \log (x))}{x^2 (\log (x)+2)^2}-\frac {4}{\log (x)+2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 30
Rule 2288
Rule 2302
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x+e^{-x} \log (5) (-12-8 x+(-4-4 x) \log (x))}{x^2 (2+\log (x))^2} \, dx\\ &=\int \left (\frac {4}{x (2+\log (x))^2}-\frac {4 e^{-x} \log (5) (3+2 x+\log (x)+x \log (x))}{x^2 (2+\log (x))^2}\right ) \, dx\\ &=4 \int \frac {1}{x (2+\log (x))^2} \, dx-(4 \log (5)) \int \frac {e^{-x} (3+2 x+\log (x)+x \log (x))}{x^2 (2+\log (x))^2} \, dx\\ &=\frac {4 e^{-x} \log (5) (2 x+x \log (x))}{x^2 (2+\log (x))^2}+4 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,2+\log (x)\right )\\ &=-\frac {4}{2+\log (x)}+\frac {4 e^{-x} \log (5) (2 x+x \log (x))}{x^2 (2+\log (x))^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 24, normalized size = 0.96 \begin {gather*} \frac {e^{-x} \left (-4 e^x x+\log (625)\right )}{x (2+\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 24, normalized size = 0.96 \begin {gather*} -\frac {4 \, {\left (x - e^{\left (-x + \log \left (\log \relax (5)\right )\right )}\right )}}{x \log \relax (x) + 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 23, normalized size = 0.92 \begin {gather*} \frac {4 \, {\left (e^{\left (-x\right )} \log \relax (5) - x\right )}}{x \log \relax (x) + 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 22, normalized size = 0.88
method | result | size |
risch | \(-\frac {4 \left (x -\ln \relax (5) {\mathrm e}^{-x}\right )}{x \left (\ln \relax (x )+2\right )}\) | \(22\) |
norman | \(\frac {-4 x +4 \,{\mathrm e}^{\ln \left (\ln \relax (5)\right )-x}}{\left (\ln \relax (x )+2\right ) x}\) | \(25\) |
default | \(\frac {4 \,{\mathrm e}^{\ln \left (\ln \relax (5)\right )-x}}{x \left (\ln \relax (x )+2\right )}-\frac {4}{\ln \relax (x )+2}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 27, normalized size = 1.08 \begin {gather*} \frac {4 \, e^{\left (-x\right )} \log \relax (5)}{x \log \relax (x) + 2 \, x} - \frac {4}{\log \relax (x) + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.11, size = 23, normalized size = 0.92 \begin {gather*} \frac {4\,{\mathrm {e}}^{-x}\,\left (\ln \relax (5)-x\,{\mathrm {e}}^x\right )}{x\,\left (\ln \relax (x)+2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 22, normalized size = 0.88 \begin {gather*} - \frac {4}{\log {\relax (x )} + 2} + \frac {4 e^{- x} \log {\relax (5 )}}{x \log {\relax (x )} + 2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________