3.102.83 \(\int \frac {48-120 x+4 x^2+(15-100 x-5 x^2) \log (\frac {9-120 x+394 x^2+40 x^3+x^4}{x^4})}{-15 x^2+100 x^3+5 x^4} \, dx\)

Optimal. Leaf size=34 \[ e^4-\frac {4+x}{5 x}+\frac {\log \left (\left (-\frac {3}{x^2}+\frac {20+x}{x}\right )^2\right )}{x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.31, antiderivative size = 29, normalized size of antiderivative = 0.85, number of steps used = 16, number of rules used = 9, integrand size = 63, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {1594, 6688, 12, 14, 1628, 632, 31, 2525, 800} \begin {gather*} \frac {\log \left (\frac {\left (-x^2-20 x+3\right )^2}{x^4}\right )}{x}-\frac {4}{5 x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(48 - 120*x + 4*x^2 + (15 - 100*x - 5*x^2)*Log[(9 - 120*x + 394*x^2 + 40*x^3 + x^4)/x^4])/(-15*x^2 + 100*x
^3 + 5*x^4),x]

[Out]

-4/(5*x) + Log[(3 - 20*x - x^2)^2/x^4]/x

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 632

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[
(c*d - e*(b/2 - q/2))/q, Int[1/(b/2 - q/2 + c*x), x], x] - Dist[(c*d - e*(b/2 + q/2))/q, Int[1/(b/2 + q/2 + c*
x), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] && NiceSqrtQ[b^2 - 4*a*
c]

Rule 800

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[Exp
andIntegrand[((d + e*x)^m*(f + g*x))/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 -
 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[m]

Rule 1594

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^
(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] && PosQ[r - p]

Rule 1628

Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegra
nd[(d + e*x)^m*Pq*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && PolyQ[Pq, x] && IGtQ[p, -2]

Rule 2525

Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[((d + e*x)^(m
+ 1)*(a + b*Log[c*RFx^p])^n)/(e*(m + 1)), x] - Dist[(b*n*p)/(e*(m + 1)), Int[SimplifyIntegrand[((d + e*x)^(m +
 1)*(a + b*Log[c*RFx^p])^(n - 1)*D[RFx, x])/RFx, x], x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && RationalFunc
tionQ[RFx, x] && IGtQ[n, 0] && (EqQ[n, 1] || IntegerQ[m]) && NeQ[m, -1]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {48-120 x+4 x^2+\left (15-100 x-5 x^2\right ) \log \left (\frac {9-120 x+394 x^2+40 x^3+x^4}{x^4}\right )}{x^2 \left (-15+100 x+5 x^2\right )} \, dx\\ &=\int \frac {\frac {4 \left (12-30 x+x^2\right )}{-3+20 x+x^2}-5 \log \left (\frac {\left (-3+20 x+x^2\right )^2}{x^4}\right )}{5 x^2} \, dx\\ &=\frac {1}{5} \int \frac {\frac {4 \left (12-30 x+x^2\right )}{-3+20 x+x^2}-5 \log \left (\frac {\left (-3+20 x+x^2\right )^2}{x^4}\right )}{x^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {4 \left (12-30 x+x^2\right )}{x^2 \left (-3+20 x+x^2\right )}-\frac {5 \log \left (\frac {\left (-3+20 x+x^2\right )^2}{x^4}\right )}{x^2}\right ) \, dx\\ &=\frac {4}{5} \int \frac {12-30 x+x^2}{x^2 \left (-3+20 x+x^2\right )} \, dx-\int \frac {\log \left (\frac {\left (-3+20 x+x^2\right )^2}{x^4}\right )}{x^2} \, dx\\ &=\frac {\log \left (\frac {\left (3-20 x-x^2\right )^2}{x^4}\right )}{x}+\frac {4}{5} \int \left (-\frac {4}{x^2}-\frac {50}{3 x}+\frac {5 (203+10 x)}{3 \left (-3+20 x+x^2\right )}\right ) \, dx-\int \frac {-12+40 x}{x^2 \left (3-20 x-x^2\right )} \, dx\\ &=\frac {16}{5 x}-\frac {40 \log (x)}{3}+\frac {\log \left (\frac {\left (3-20 x-x^2\right )^2}{x^4}\right )}{x}+\frac {4}{3} \int \frac {203+10 x}{-3+20 x+x^2} \, dx-\int \left (-\frac {4}{x^2}-\frac {40}{3 x}+\frac {4 (203+10 x)}{3 \left (-3+20 x+x^2\right )}\right ) \, dx\\ &=-\frac {4}{5 x}+\frac {\log \left (\frac {\left (3-20 x-x^2\right )^2}{x^4}\right )}{x}-\frac {4}{3} \int \frac {203+10 x}{-3+20 x+x^2} \, dx+\frac {1}{3} \left (2 \left (10-\sqrt {103}\right )\right ) \int \frac {1}{10+\sqrt {103}+x} \, dx+\frac {1}{3} \left (2 \left (10+\sqrt {103}\right )\right ) \int \frac {1}{10-\sqrt {103}+x} \, dx\\ &=-\frac {4}{5 x}+\frac {2}{3} \left (10+\sqrt {103}\right ) \log \left (10-\sqrt {103}+x\right )+\frac {2}{3} \left (10-\sqrt {103}\right ) \log \left (10+\sqrt {103}+x\right )+\frac {\log \left (\frac {\left (3-20 x-x^2\right )^2}{x^4}\right )}{x}-\frac {1}{3} \left (2 \left (10-\sqrt {103}\right )\right ) \int \frac {1}{10+\sqrt {103}+x} \, dx-\frac {1}{3} \left (2 \left (10+\sqrt {103}\right )\right ) \int \frac {1}{10-\sqrt {103}+x} \, dx\\ &=-\frac {4}{5 x}+\frac {\log \left (\frac {\left (3-20 x-x^2\right )^2}{x^4}\right )}{x}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 30, normalized size = 0.88 \begin {gather*} \frac {1}{5} \left (-\frac {4}{x}+\frac {5 \log \left (\frac {\left (-3+20 x+x^2\right )^2}{x^4}\right )}{x}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(48 - 120*x + 4*x^2 + (15 - 100*x - 5*x^2)*Log[(9 - 120*x + 394*x^2 + 40*x^3 + x^4)/x^4])/(-15*x^2 +
 100*x^3 + 5*x^4),x]

[Out]

(-4/x + (5*Log[(-3 + 20*x + x^2)^2/x^4])/x)/5

________________________________________________________________________________________

fricas [A]  time = 0.75, size = 32, normalized size = 0.94 \begin {gather*} \frac {5 \, \log \left (\frac {x^{4} + 40 \, x^{3} + 394 \, x^{2} - 120 \, x + 9}{x^{4}}\right ) - 4}{5 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-5*x^2-100*x+15)*log((x^4+40*x^3+394*x^2-120*x+9)/x^4)+4*x^2-120*x+48)/(5*x^4+100*x^3-15*x^2),x, a
lgorithm="fricas")

[Out]

1/5*(5*log((x^4 + 40*x^3 + 394*x^2 - 120*x + 9)/x^4) - 4)/x

________________________________________________________________________________________

giac [A]  time = 0.21, size = 33, normalized size = 0.97 \begin {gather*} \frac {\log \left (\frac {x^{4} + 40 \, x^{3} + 394 \, x^{2} - 120 \, x + 9}{x^{4}}\right )}{x} - \frac {4}{5 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-5*x^2-100*x+15)*log((x^4+40*x^3+394*x^2-120*x+9)/x^4)+4*x^2-120*x+48)/(5*x^4+100*x^3-15*x^2),x, a
lgorithm="giac")

[Out]

log((x^4 + 40*x^3 + 394*x^2 - 120*x + 9)/x^4)/x - 4/5/x

________________________________________________________________________________________

maple [A]  time = 0.05, size = 30, normalized size = 0.88




method result size



norman \(\frac {-\frac {4}{5}+\ln \left (\frac {x^{4}+40 x^{3}+394 x^{2}-120 x +9}{x^{4}}\right )}{x}\) \(30\)
derivativedivides \(-\frac {4}{5 x}+\frac {\ln \left (1+\frac {40}{x}+\frac {9}{x^{4}}+\frac {394}{x^{2}}-\frac {120}{x^{3}}\right )}{x}\) \(34\)
default \(-\frac {4}{5 x}+\frac {\ln \left (1+\frac {40}{x}+\frac {9}{x^{4}}+\frac {394}{x^{2}}-\frac {120}{x^{3}}\right )}{x}\) \(34\)
risch \(\frac {\ln \left (\frac {x^{4}+40 x^{3}+394 x^{2}-120 x +9}{x^{4}}\right )}{x}-\frac {4}{5 x}\) \(34\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-5*x^2-100*x+15)*ln((x^4+40*x^3+394*x^2-120*x+9)/x^4)+4*x^2-120*x+48)/(5*x^4+100*x^3-15*x^2),x,method=_R
ETURNVERBOSE)

[Out]

(-4/5+ln((x^4+40*x^3+394*x^2-120*x+9)/x^4))/x

________________________________________________________________________________________

maxima [A]  time = 0.50, size = 52, normalized size = 1.53 \begin {gather*} -\frac {2 \, {\left ({\left (16 \, x - 3\right )} \log \left (x^{2} + 20 \, x - 3\right ) - 2 \, {\left (16 \, x - 3\right )} \log \relax (x) + 6\right )}}{3 \, x} + \frac {16}{5 \, x} + \frac {32}{3} \, \log \left (x^{2} + 20 \, x - 3\right ) - \frac {64}{3} \, \log \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-5*x^2-100*x+15)*log((x^4+40*x^3+394*x^2-120*x+9)/x^4)+4*x^2-120*x+48)/(5*x^4+100*x^3-15*x^2),x, a
lgorithm="maxima")

[Out]

-2/3*((16*x - 3)*log(x^2 + 20*x - 3) - 2*(16*x - 3)*log(x) + 6)/x + 16/5/x + 32/3*log(x^2 + 20*x - 3) - 64/3*l
og(x)

________________________________________________________________________________________

mupad [B]  time = 7.02, size = 29, normalized size = 0.85 \begin {gather*} \frac {\ln \left (\frac {x^4+40\,x^3+394\,x^2-120\,x+9}{x^4}\right )-\frac {4}{5}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(120*x - 4*x^2 + log((394*x^2 - 120*x + 40*x^3 + x^4 + 9)/x^4)*(100*x + 5*x^2 - 15) - 48)/(100*x^3 - 15*x
^2 + 5*x^4),x)

[Out]

(log((394*x^2 - 120*x + 40*x^3 + x^4 + 9)/x^4) - 4/5)/x

________________________________________________________________________________________

sympy [A]  time = 0.20, size = 29, normalized size = 0.85 \begin {gather*} \frac {\log {\left (\frac {x^{4} + 40 x^{3} + 394 x^{2} - 120 x + 9}{x^{4}} \right )}}{x} - \frac {4}{5 x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-5*x**2-100*x+15)*ln((x**4+40*x**3+394*x**2-120*x+9)/x**4)+4*x**2-120*x+48)/(5*x**4+100*x**3-15*x*
*2),x)

[Out]

log((x**4 + 40*x**3 + 394*x**2 - 120*x + 9)/x**4)/x - 4/(5*x)

________________________________________________________________________________________