Optimal. Leaf size=34 \[ e^4-\frac {4+x}{5 x}+\frac {\log \left (\left (-\frac {3}{x^2}+\frac {20+x}{x}\right )^2\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.31, antiderivative size = 29, normalized size of antiderivative = 0.85, number of steps used = 16, number of rules used = 9, integrand size = 63, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {1594, 6688, 12, 14, 1628, 632, 31, 2525, 800} \begin {gather*} \frac {\log \left (\frac {\left (-x^2-20 x+3\right )^2}{x^4}\right )}{x}-\frac {4}{5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 31
Rule 632
Rule 800
Rule 1594
Rule 1628
Rule 2525
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {48-120 x+4 x^2+\left (15-100 x-5 x^2\right ) \log \left (\frac {9-120 x+394 x^2+40 x^3+x^4}{x^4}\right )}{x^2 \left (-15+100 x+5 x^2\right )} \, dx\\ &=\int \frac {\frac {4 \left (12-30 x+x^2\right )}{-3+20 x+x^2}-5 \log \left (\frac {\left (-3+20 x+x^2\right )^2}{x^4}\right )}{5 x^2} \, dx\\ &=\frac {1}{5} \int \frac {\frac {4 \left (12-30 x+x^2\right )}{-3+20 x+x^2}-5 \log \left (\frac {\left (-3+20 x+x^2\right )^2}{x^4}\right )}{x^2} \, dx\\ &=\frac {1}{5} \int \left (\frac {4 \left (12-30 x+x^2\right )}{x^2 \left (-3+20 x+x^2\right )}-\frac {5 \log \left (\frac {\left (-3+20 x+x^2\right )^2}{x^4}\right )}{x^2}\right ) \, dx\\ &=\frac {4}{5} \int \frac {12-30 x+x^2}{x^2 \left (-3+20 x+x^2\right )} \, dx-\int \frac {\log \left (\frac {\left (-3+20 x+x^2\right )^2}{x^4}\right )}{x^2} \, dx\\ &=\frac {\log \left (\frac {\left (3-20 x-x^2\right )^2}{x^4}\right )}{x}+\frac {4}{5} \int \left (-\frac {4}{x^2}-\frac {50}{3 x}+\frac {5 (203+10 x)}{3 \left (-3+20 x+x^2\right )}\right ) \, dx-\int \frac {-12+40 x}{x^2 \left (3-20 x-x^2\right )} \, dx\\ &=\frac {16}{5 x}-\frac {40 \log (x)}{3}+\frac {\log \left (\frac {\left (3-20 x-x^2\right )^2}{x^4}\right )}{x}+\frac {4}{3} \int \frac {203+10 x}{-3+20 x+x^2} \, dx-\int \left (-\frac {4}{x^2}-\frac {40}{3 x}+\frac {4 (203+10 x)}{3 \left (-3+20 x+x^2\right )}\right ) \, dx\\ &=-\frac {4}{5 x}+\frac {\log \left (\frac {\left (3-20 x-x^2\right )^2}{x^4}\right )}{x}-\frac {4}{3} \int \frac {203+10 x}{-3+20 x+x^2} \, dx+\frac {1}{3} \left (2 \left (10-\sqrt {103}\right )\right ) \int \frac {1}{10+\sqrt {103}+x} \, dx+\frac {1}{3} \left (2 \left (10+\sqrt {103}\right )\right ) \int \frac {1}{10-\sqrt {103}+x} \, dx\\ &=-\frac {4}{5 x}+\frac {2}{3} \left (10+\sqrt {103}\right ) \log \left (10-\sqrt {103}+x\right )+\frac {2}{3} \left (10-\sqrt {103}\right ) \log \left (10+\sqrt {103}+x\right )+\frac {\log \left (\frac {\left (3-20 x-x^2\right )^2}{x^4}\right )}{x}-\frac {1}{3} \left (2 \left (10-\sqrt {103}\right )\right ) \int \frac {1}{10+\sqrt {103}+x} \, dx-\frac {1}{3} \left (2 \left (10+\sqrt {103}\right )\right ) \int \frac {1}{10-\sqrt {103}+x} \, dx\\ &=-\frac {4}{5 x}+\frac {\log \left (\frac {\left (3-20 x-x^2\right )^2}{x^4}\right )}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 30, normalized size = 0.88 \begin {gather*} \frac {1}{5} \left (-\frac {4}{x}+\frac {5 \log \left (\frac {\left (-3+20 x+x^2\right )^2}{x^4}\right )}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 32, normalized size = 0.94 \begin {gather*} \frac {5 \, \log \left (\frac {x^{4} + 40 \, x^{3} + 394 \, x^{2} - 120 \, x + 9}{x^{4}}\right ) - 4}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 33, normalized size = 0.97 \begin {gather*} \frac {\log \left (\frac {x^{4} + 40 \, x^{3} + 394 \, x^{2} - 120 \, x + 9}{x^{4}}\right )}{x} - \frac {4}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 30, normalized size = 0.88
method | result | size |
norman | \(\frac {-\frac {4}{5}+\ln \left (\frac {x^{4}+40 x^{3}+394 x^{2}-120 x +9}{x^{4}}\right )}{x}\) | \(30\) |
derivativedivides | \(-\frac {4}{5 x}+\frac {\ln \left (1+\frac {40}{x}+\frac {9}{x^{4}}+\frac {394}{x^{2}}-\frac {120}{x^{3}}\right )}{x}\) | \(34\) |
default | \(-\frac {4}{5 x}+\frac {\ln \left (1+\frac {40}{x}+\frac {9}{x^{4}}+\frac {394}{x^{2}}-\frac {120}{x^{3}}\right )}{x}\) | \(34\) |
risch | \(\frac {\ln \left (\frac {x^{4}+40 x^{3}+394 x^{2}-120 x +9}{x^{4}}\right )}{x}-\frac {4}{5 x}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 52, normalized size = 1.53 \begin {gather*} -\frac {2 \, {\left ({\left (16 \, x - 3\right )} \log \left (x^{2} + 20 \, x - 3\right ) - 2 \, {\left (16 \, x - 3\right )} \log \relax (x) + 6\right )}}{3 \, x} + \frac {16}{5 \, x} + \frac {32}{3} \, \log \left (x^{2} + 20 \, x - 3\right ) - \frac {64}{3} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.02, size = 29, normalized size = 0.85 \begin {gather*} \frac {\ln \left (\frac {x^4+40\,x^3+394\,x^2-120\,x+9}{x^4}\right )-\frac {4}{5}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 29, normalized size = 0.85 \begin {gather*} \frac {\log {\left (\frac {x^{4} + 40 x^{3} + 394 x^{2} - 120 x + 9}{x^{4}} \right )}}{x} - \frac {4}{5 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________