Optimal. Leaf size=29 \[ \log \left (e^x-\frac {4+e^4-x-x^2-e (6+x)}{x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4-6 e+e^4+x^2+e^x x^2}{-4 x-e^4 x+x^2+e^x x^2+x^3+e \left (6 x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4-6 e+e^4+x^2+e^x x^2}{\left (-4-e^4\right ) x+x^2+e^x x^2+x^3+e \left (6 x+x^2\right )} \, dx\\ &=\int \frac {4 \left (1+\frac {1}{4} e \left (-6+e^3\right )\right )+x^2+e^x x^2}{\left (-4-e^4\right ) x+x^2+e^x x^2+x^3+e \left (6 x+x^2\right )} \, dx\\ &=\int \left (1+\frac {-4+6 e-e^4-\left (4-6 e+e^4\right ) x+e x^2+x^3}{x \left (4 \left (1+\frac {1}{4} e \left (-6+e^3\right )\right )-e^x x-(1+e) x-x^2\right )}\right ) \, dx\\ &=x+\int \frac {-4+6 e-e^4-\left (4-6 e+e^4\right ) x+e x^2+x^3}{x \left (4 \left (1+\frac {1}{4} e \left (-6+e^3\right )\right )-e^x x-(1+e) x-x^2\right )} \, dx\\ &=x+\int \left (\frac {6 e \left (1-\frac {4+e^4}{6 e}\right )}{4 \left (1+\frac {1}{4} e \left (-6+e^3\right )\right )-e^x x-(1+e) x-x^2}+\frac {-4+6 e-e^4}{x \left (4 \left (1+\frac {1}{4} e \left (-6+e^3\right )\right )-e^x x-(1+e) x-x^2\right )}+\frac {e x}{4 \left (1+\frac {1}{4} e \left (-6+e^3\right )\right )-e^x x-(1+e) x-x^2}+\frac {x^2}{4 \left (1+\frac {1}{4} e \left (-6+e^3\right )\right )-e^x x-(1+e) x-x^2}\right ) \, dx\\ &=x+e \int \frac {x}{4 \left (1+\frac {1}{4} e \left (-6+e^3\right )\right )-e^x x-(1+e) x-x^2} \, dx+\left (-4+6 e-e^4\right ) \int \frac {1}{4 \left (1+\frac {1}{4} e \left (-6+e^3\right )\right )-e^x x-(1+e) x-x^2} \, dx+\left (-4+6 e-e^4\right ) \int \frac {1}{x \left (4 \left (1+\frac {1}{4} e \left (-6+e^3\right )\right )-e^x x-(1+e) x-x^2\right )} \, dx+\int \frac {x^2}{4 \left (1+\frac {1}{4} e \left (-6+e^3\right )\right )-e^x x-(1+e) x-x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.44, size = 32, normalized size = 1.10 \begin {gather*} -\log (x)+\log \left (4-6 e+e^4-x-e x-e^x x-x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 25, normalized size = 0.86 \begin {gather*} \log \left (\frac {x^{2} + {\left (x + 6\right )} e + x e^{x} + x - e^{4} - 4}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 28, normalized size = 0.97 \begin {gather*} \log \left (x^{2} + x e + x e^{x} + x - e^{4} + 6 \, e - 4\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 31, normalized size = 1.07
method | result | size |
risch | \(\ln \left ({\mathrm e}^{x}-\frac {{\mathrm e}^{4}-x \,{\mathrm e}-x^{2}-6 \,{\mathrm e}-x +4}{x}\right )\) | \(31\) |
norman | \(-\ln \relax (x )+\ln \left (-x \,{\mathrm e}-x^{2}-{\mathrm e}^{x} x +{\mathrm e}^{4}-6 \,{\mathrm e}-x +4\right )\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 28, normalized size = 0.97 \begin {gather*} \log \left (\frac {x^{2} + x {\left (e + 1\right )} + x e^{x} - e^{4} + 6 \, e - 4}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.31, size = 28, normalized size = 0.97 \begin {gather*} \ln \left (x+6\,\mathrm {e}-{\mathrm {e}}^4+x\,\mathrm {e}+x\,{\mathrm {e}}^x+x^2-4\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 26, normalized size = 0.90 \begin {gather*} \log {\left (e^{x} + \frac {x^{2} + x + e x - e^{4} - 4 + 6 e}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________