Optimal. Leaf size=28 \[ 4+\frac {3}{-2+x}-2 \left (-3+3 \left (4 e^5+2 x\right )\right ) \log ^2(x) \]
________________________________________________________________________________________
Rubi [A] time = 0.22, antiderivative size = 30, normalized size of antiderivative = 1.07, number of steps used = 9, number of rules used = 7, integrand size = 71, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.099, Rules used = {1594, 27, 6688, 2346, 2301, 2295, 2296} \begin {gather*} -\frac {3}{2-x}-12 x \log ^2(x)+6 \left (1-4 e^5\right ) \log ^2(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 2295
Rule 2296
Rule 2301
Rule 2346
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3 x+\left (48-144 x+108 x^2-24 x^3+4 e^5 \left (-48+48 x-12 x^2\right )\right ) \log (x)+\left (-48 x+48 x^2-12 x^3\right ) \log ^2(x)}{x \left (4-4 x+x^2\right )} \, dx\\ &=\int \frac {-3 x+\left (48-144 x+108 x^2-24 x^3+4 e^5 \left (-48+48 x-12 x^2\right )\right ) \log (x)+\left (-48 x+48 x^2-12 x^3\right ) \log ^2(x)}{(-2+x)^2 x} \, dx\\ &=\int \left (-\frac {3}{(-2+x)^2}-\frac {12 \left (-1+4 e^5+2 x\right ) \log (x)}{x}-12 \log ^2(x)\right ) \, dx\\ &=-\frac {3}{2-x}-12 \int \frac {\left (-1+4 e^5+2 x\right ) \log (x)}{x} \, dx-12 \int \log ^2(x) \, dx\\ &=-\frac {3}{2-x}-12 x \log ^2(x)+\left (12 \left (1-4 e^5\right )\right ) \int \frac {\log (x)}{x} \, dx\\ &=-\frac {3}{2-x}+6 \left (1-4 e^5\right ) \log ^2(x)-12 x \log ^2(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 28, normalized size = 1.00 \begin {gather*} \frac {3}{-2+x}+6 \left (1-4 e^5\right ) \log ^2(x)-12 x \log ^2(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 36, normalized size = 1.29 \begin {gather*} -\frac {3 \, {\left (2 \, {\left (2 \, x^{2} + {\left (x - 2\right )} e^{\left (2 \, \log \relax (2) + 5\right )} - 5 \, x + 2\right )} \log \relax (x)^{2} - 1\right )}}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 48, normalized size = 1.71 \begin {gather*} -\frac {3 \, {\left (4 \, x^{2} \log \relax (x)^{2} + 8 \, x e^{5} \log \relax (x)^{2} - 10 \, x \log \relax (x)^{2} - 16 \, e^{5} \log \relax (x)^{2} + 4 \, \log \relax (x)^{2} - 1\right )}}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 23, normalized size = 0.82
method | result | size |
risch | \(\left (-12 x -24 \,{\mathrm e}^{5}+6\right ) \ln \relax (x )^{2}+\frac {3}{x -2}\) | \(23\) |
default | \(\frac {3}{x -2}-12 x \ln \relax (x )^{2}-24 \,{\mathrm e}^{5} \ln \relax (x )^{2}+6 \ln \relax (x )^{2}\) | \(30\) |
norman | \(\frac {\left (-12+48 \,{\mathrm e}^{5}\right ) \ln \relax (x )^{2}+\left (30-24 \,{\mathrm e}^{5}\right ) x \ln \relax (x )^{2}-12 x^{2} \ln \relax (x )^{2}+3}{x -2}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 23, normalized size = 0.82 \begin {gather*} -6 \, {\left (2 \, x + 4 \, e^{5} - 1\right )} \log \relax (x)^{2} + \frac {3}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.64, size = 29, normalized size = 1.04 \begin {gather*} \frac {3}{x-2}-12\,x\,{\ln \relax (x)}^2-24\,{\mathrm {e}}^5\,{\ln \relax (x)}^2+6\,{\ln \relax (x)}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 19, normalized size = 0.68 \begin {gather*} \left (- 12 x - 24 e^{5} + 6\right ) \log {\relax (x )}^{2} + \frac {3}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________