Optimal. Leaf size=31 \[ 3-e^x+2 x-\frac {e^5 \left (\frac {e^{2 x}}{x^2}+x^2\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 27, normalized size of antiderivative = 0.87, number of steps used = 5, number of rules used = 4, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {6, 14, 2194, 2197} \begin {gather*} -\frac {e^{2 x+5}}{x^3}+\left (2-e^5\right ) x-e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 14
Rule 2194
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{5+2 x} (3-2 x)-e^x x^4+\left (2-e^5\right ) x^4}{x^4} \, dx\\ &=\int \left (-e^x+2 \left (1-\frac {e^5}{2}\right )-\frac {e^{5+2 x} (-3+2 x)}{x^4}\right ) \, dx\\ &=\left (2-e^5\right ) x-\int e^x \, dx-\int \frac {e^{5+2 x} (-3+2 x)}{x^4} \, dx\\ &=-e^x-\frac {e^{5+2 x}}{x^3}+\left (2-e^5\right ) x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 27, normalized size = 0.87 \begin {gather*} -e^x-\frac {e^{5+2 x}}{x^3}+2 x-e^5 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 29, normalized size = 0.94 \begin {gather*} -\frac {x^{4} e^{5} - 2 \, x^{4} + x^{3} e^{x} + e^{\left (2 \, x + 5\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 29, normalized size = 0.94 \begin {gather*} -\frac {x^{4} e^{5} - 2 \, x^{4} + x^{3} e^{x} + e^{\left (2 \, x + 5\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 25, normalized size = 0.81
method | result | size |
risch | \(-x \,{\mathrm e}^{5}+2 x -\frac {{\mathrm e}^{5+2 x}}{x^{3}}-{\mathrm e}^{x}\) | \(25\) |
norman | \(\frac {\left (2-{\mathrm e}^{5}\right ) x^{4}-{\mathrm e}^{5} {\mathrm e}^{2 x}-{\mathrm e}^{x} x^{3}}{x^{3}}\) | \(31\) |
default | \(2 x +3 \,{\mathrm e}^{5} \left (-\frac {{\mathrm e}^{2 x}}{3 x^{3}}-\frac {{\mathrm e}^{2 x}}{3 x^{2}}-\frac {2 \,{\mathrm e}^{2 x}}{3 x}-\frac {4 \expIntegralEi \left (1, -2 x \right )}{3}\right )-2 \,{\mathrm e}^{5} \left (-\frac {{\mathrm e}^{2 x}}{2 x^{2}}-\frac {{\mathrm e}^{2 x}}{x}-2 \expIntegralEi \left (1, -2 x \right )\right )-x \,{\mathrm e}^{5}-{\mathrm e}^{x}\) | \(83\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.37, size = 31, normalized size = 1.00 \begin {gather*} -x e^{5} + 8 \, e^{5} \Gamma \left (-2, -2 \, x\right ) + 24 \, e^{5} \Gamma \left (-3, -2 \, x\right ) + 2 \, x - e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.83, size = 23, normalized size = 0.74 \begin {gather*} -{\mathrm {e}}^x-x\,\left ({\mathrm {e}}^5-2\right )-\frac {{\mathrm {e}}^{2\,x+5}}{x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 26, normalized size = 0.84 \begin {gather*} x \left (2 - e^{5}\right ) + \frac {- x^{3} e^{x} - e^{5} e^{2 x}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________